Advertisement

Abstract

The interaction of electromagnetic radiation with matter occurs over a broad range of frequencies and usually in a highly specific manner (Table 5-1). The study and use of these interactions comprise the domain of spectroscopy that provides information ranging from the electronic structure of atoms to the dynamics of polymeric chains In the most general conventional arrangement the sample (which may be solid, liquid, or gas) is irradiated with monochromatic (single-wavelength) radiation and the extent of the interaction is evaluated from the attenuation of the original radiation or by observing the secondary radiation emitted from the sample (Figure 5-1). The absorption of the primary radiation can also be coupled to other, nonoptical effects, such as the increase in temperature or pressure, or the change in electrical conductivity.

Keywords

Optical Fiber Optical Sensor Optical Waveguide Evanescent Wave Evanescent Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 5

  1. 1.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, 1983.CrossRefGoogle Scholar
  2. 2.
    A. T. Tu, Raman Spectroscopy in Biology, Wiley—Interscience, New York, 1982.Google Scholar
  3. 3.
    M. Born and E. Wolf, Principles of Optics, Pergamon Press, New York, 1980.Google Scholar
  4. 4.
    A. W. Snyder and J. D. Lowe, Optical Waveguide Theory, Chapman and Hall, New York, 1983.Google Scholar
  5. 5.
    L. Rouchi and F. M. Schaggi, Adv. Electron. Electron Phys. 51 (1980) 63.CrossRefGoogle Scholar
  6. 6.
    P. Kubelka and F. Munk, Z. Tech. Phys. 12 (1931) 593.Google Scholar
  7. 7.
    H. G. Hecht, Appl. Spectrosc. 37 (1983) 348.CrossRefGoogle Scholar
  8. 8.
    W. R. Seitz, Anal. Chem. 56 (1984) 16A.Google Scholar
  9. 9.
    O. S. Wolfbeis, Fresenius Z. Anal. Chem. 325 (1986) 387.Google Scholar
  10. 10.
    K. Newby, W. M. Reichert, J. D. Andrade, and R. E. Benner, Appl. Opt. 23 (1984) 1812.CrossRefGoogle Scholar
  11. 11.
    N. J. Harrick, Internal Reflection Spectroscopy, Harrick Sci. Corp., New York, 1979.Google Scholar
  12. 12.
    Y. L. Cheng, B. K. Lok, and C. R. Robertson, in: Surface and Interfacial Aspects of Biomedical Polymers (J. D. Andrade, ed.), Vol. 2, Plenum Press, New York, 1985.Google Scholar
  13. 13.
    V. Hlady, R. A. Van Wagenen, and J. D. Andrade, in: Surface and Interfacial Aspects of Biomedical Polymers (J. D. Andrade, ed.), Vol. 2, Plenum Press, New York, 1985.Google Scholar
  14. 14.
    O. S. Wolflbeis and H. Offenbacher, Sensors and Actuators 9 (1986) 85.CrossRefGoogle Scholar
  15. 15.
    J. Janata, Anal. Chem. 59 (1987) 1351.CrossRefGoogle Scholar
  16. 16.
    N. Opitz and D. W. Lubbers, Sensors and Actuators 4 (1983) 473.CrossRefGoogle Scholar
  17. 17.
    J. T. Davies and E. K. Rideal, Interfacial Phenomena, Chapter 2, Academic Press, Orlando, 1963.Google Scholar
  18. 18.
    R. H. Boyd, in: Solute-Solvent Interactions, Vol. 1 ( J. F. Coetzee and C. D. Ritchie, eds.), Dekker, New York, 1969.Google Scholar
  19. 19.
    M. A. Arnold and T. J. Ostler, Anal. Chem. 58 (1986) 1137.CrossRefGoogle Scholar
  20. 20.
    Z. Zhujun and W. R. Seitz, Anal. Chem. 58 (1986) 220.CrossRefGoogle Scholar
  21. 21.
    F. L. Dickert, E. H. Lehman, S. K. Schreiner, H. Kimmel, and G. R. Mages, Anal. Chem. 60 (1988) 1377.CrossRefGoogle Scholar
  22. 22.
    J. F. Giuliani, H. Wohltjen, and N. L. Jarvis, Opt. Lett. 8 (1983) 54.CrossRefGoogle Scholar
  23. 23.
    D. S. Ballantine and H. Wohltjen, Anal. Chem. 58 (1986) 2883.CrossRefGoogle Scholar
  24. 24.
    O. S. Wolfbeis, H. E. Posch, and H. W. Kroneis, Anal. Chem. 57 (1985) 2556.CrossRefGoogle Scholar
  25. 25.
    H. W. Kroneis and H. J. Marsoner, Sensors and Actuators 4 (1983) 587.CrossRefGoogle Scholar
  26. 26.
    M. A. Arnold, Anal. Chem. 57 (1985) 565.CrossRefGoogle Scholar
  27. 27.
    J. D. Andrade, R. A. Van Wagenen, D. E. Gregonis, K. Newby, and J.-N. Lin, IEEE Trans. Electron Devices ED-32 (1985) 1175.Google Scholar
  28. 28.
    J. F. Place, R. M. Sutherland, and C. Dähne, Biosensors 1 (1985) 321.CrossRefGoogle Scholar
  29. 29.
    V. Hiady, D. R. Reinecke, and J. D. Andrade, J. Colloid Interface Sci. 111 (1986) 555.CrossRefGoogle Scholar
  30. 30.
    J. S. Schultz, S. Mansouri, and I. J. Goldstein, Diabetes Care 5 (1982) 245.CrossRefGoogle Scholar
  31. 31.
    M. K. Carpenter, H. Van Ryswyk, and A. B. Ellis, Langmuir 1 (1985) 605.CrossRefGoogle Scholar
  32. 32.
    H. Van Ryswyk and A. B. Ellis, J. Am. Chem. Soc. 108 (1986) 2454.CrossRefGoogle Scholar
  33. 33.
    M. A. Butler, Appl. Phys. Lett. 45 (1984) 1007.Google Scholar
  34. 34.
    J. D. Swalen, J. G. Gordon, II, M. R. Philpott, A. Brillante, I. Pockrand, and R. Santo, Am. J. Phys. 48 (1980) 669.CrossRefGoogle Scholar
  35. 35.
    B. Lindberg, C. Nylander, and I. Lundstrom, Sensors and Actuators 4 (1983) 299.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jiří Janata
    • 1
  1. 1.University of UtahSalt Lake CityUSA

Personalised recommendations