Advertisement

The Physical and Chemical Stability of Wine

  • Roger B. Boulton
  • Vernon L. Singleton
  • Linda F. Bisson
  • Ralph E. Kunkee
Chapter

Abstract

The major physical instability in bottled wines continues to be the precipitation of the tartaric salts, potassium bitartrate, and calcium tartrate. Prevention of this precipitation in bottled wines is desirable because consumers find it objectionable and an indication of poor quality control. Precipitation of these salts can be due to one or more reasons, such as the incomplete stabilization in the cellar, the use of a nonrepresentative sample for the stability test, the use of an inappropriate stability test, the removal of colloidal materials at the point of final filtration that have previously inhibited the precipitation and natural chemical changes, especially the polymerization of phenolic pigments. The initial instability is caused by supersaturated levels in juices that are augmented by the decrease in solubility due to ethanol and the low temperatures used for wine storage.

Keywords

Tartaric Acid White Wine Seed Crystal Plate Heat Exchanger Heat Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abgueguen, O., and R. B. Boulton. 1993. “The crystallization kinetics of calcium tartrate from model solutions and wines.” Am. J. Enol. Vitic. 44: 65–75.Google Scholar
  2. Anelli, G. 1977. “The proteins of musts.” Am. J. Enol. Vitic. 28: 200–203.Google Scholar
  3. Anon. 1976. “Scraped-surface heat exchanger reduces wine cold stabilization time.” Food Eng. 48 (Nov): 155.Google Scholar
  4. Aspinall, G. O. 1970. Polysaccharides. Pergamon Press, New York, pp. 89–92.Google Scholar
  5. Bakalinsky, A. T., and R. Boulton. 1985. “The study of an immobilized acid protease for the treatment of wine proteins.” Am. J. Enol. Vitic. 36: 23–29.Google Scholar
  6. Balakian, S., and H. W. Berg. 1968. “The role of polyphenols in the behavior of potassium bitartrate in red wines.” Am. J. Enol. Vitic. 19: 91–100.Google Scholar
  7. Bauer, H., M. Horisberger, D. A. Bush, and E. Sigarlaki. 1972. “Mannan as a major component of the bud scars of Saccharomyces cerevisiae.” Arch. Mikrobiol. 85: 202–208.CrossRefGoogle Scholar
  8. Bayly, F. C., and H. W. Berg. 1967. “Grape and wine proteins of white wine varietals.” Am. J. Enol. Vitic. 18: 18–32.Google Scholar
  9. Belleville, M.-P., J.-M. Brillouet, B. Tarodö De La Fuente, L. Saulnier, And M. Moutounet. 1991. “Differential roles of red wine colloids in the fouling of a cross-flow microfiltration alumina membrane.” Vitic. Enol. Sci. 46: 100–107.Google Scholar
  10. Berg, H. W., and M. Akiyoshi. 1961. “Determination of protein stability in wine.” Am. J. Enol. Vitic. 12: 107–110.Google Scholar
  11. Berg, H. W., and M. Akiyoshi. 1971. “The utility of potassium bitartrate concentration product values in wine processing.” Am. J. Enol. Vitic. 22: 127–134.Google Scholar
  12. Berg, H. W., M. Akiyoshi, and M. A. Amerine. 1979. “Potassium and sodium content of California wines.” Am. J. Enol. Vitic. 30: 55–57.Google Scholar
  13. Berg, H. W., R. Desoto, and M. Akiyoshi. 1968. “The effect of refrigeration, bentonite clarification and ion exchange on potassium behavior in wines.” Am. J. Enol. Vitic. 19: 208–212.Google Scholar
  14. Berg, H. W., and R. M. Keefer1958. “Analytical determination of tartrate stability in wine: 1. Potassium bitartrate.” Am. J. Enol. 9: 180–193.Google Scholar
  15. Berg, H. W., and R. M. Keefer. 1959. “Analytical determination of tartrate stability in wine: 2. Calcium tartrate.” Am. J. Enol. 10: 105–109.Google Scholar
  16. Blouin, J., and A. Desenne. 1983. “Essai d’un appareil de traitment des vins par le froid en continu (Systeme Crystal-flow, Alfa-Laval).” Conn. Vigne Vin 17: 137–150.Google Scholar
  17. Blouin, J., G. Guimberteau, and P. Audouit. 1979. “Prevention des precipitations tartriques dans les vins par le procede par contact.” Conn. Vigne Vin 13: 149–169.Google Scholar
  18. Boiret, M., A. Marty, C. Fabrega, A. Guittard, A. Tixier, A. Schaeffer, and A. Schlewitz. 1991. “Indice de stabilite tartrique des vins et risque de precipitation.” Rev. Fr. Oenol. 128: 53–58.Google Scholar
  19. Borr, E. W., and P. Sghottler. 1985. “Optimizing tartrate separation through the use of centrifuges.” Filtration and Separation 22: 364–365.Google Scholar
  20. Boulton, R. 1983. “The conductivity method for evaluating the potassium bitartrate stability of wines.” Pts 1,2. Enology Briefs 2,3 Cooperative Extension, Davis, CA: University of California.Google Scholar
  21. Bradford, M. M. 1976. “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding.” Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar
  22. Brillouet, J.-M., M.-P. Belleville, and M. Moutounet. 1991. “Possible protein-polysac-charide complexes in red wines.” Am. J. Enol. Vitic. 42: 150–152.Google Scholar
  23. Brillouet, J.-M., C. Bosso, and M. Moutounet. 1990. “Isolation, purification and characteriza-tion of an arabinogalactan from a red wine.” Am.J. Enol. Vitic. 41:29–36.Google Scholar
  24. Brillouet, J.-M., M. Moutounet, and J. L. Escudier. 1989. “Fate of yeast and grape pectic polysaccharides of a young red wine in the cross-flow microfiltration process.” Vitis 28: 49–63.Google Scholar
  25. Clark, J. P., K C. Fugelsang, and B. H. Gump. 1988. “Factors affecting induced calcium tartrate precipitation in wine.” Am. J. Enol. Vitic. 39: 155–161.Google Scholar
  26. Correa, I., M. C. Polo, L. Amigo, and M. Ramos. 1988. “Separation des proteines des mouts de raisin au moyen de techniques electrophoretiques.” Conn. Vigne Vin. 22: 1–9.Google Scholar
  27. Curvelo-Garcia, A. S. 1987. “0 producto de solubilidade do tartarato de calcio em meios hidroalcoolicos em funcâo dos sues factores determinantes.” Ciencia Tec. Vitiv. 6: 19–28.Google Scholar
  28. Desoto, R. T., and H. Yamada. 1963. “Relationship of solubility products to long range tartrate stability.” Am.J. Enol. Vitic. 14: 43–51.Google Scholar
  29. Dietrich, H., H. Schmitt, and K Wucherpfennig. 1992. “The alteration of the colloids of must and wine during winemaking. II. Change of the charge and molecular weight distribution of the polysaccharides.” Vitic. Enol. Sci. 47: 87–95.Google Scholar
  30. Dietrich, H., and E. Zimmer. 1989. “Die Kolloidbestimmung von Weinen: ein Methodenvergleich.” Mitt. Klost. 44: 13–19.Google Scholar
  31. Domeizel, M., J. Galea, J. Rey, S. Marchandeau, and A. Guittard. 1992. “Mise au point d’une methode de prevision des precipitations tartriques dans le vin.” Rev. Fr. Oenol. 139: 15–24.Google Scholar
  32. Droux, F., and C. Vialatte. 1983. “Utilisation du procedure ”mini contact“ pour l’etude des precipitations tartriques dans le vins.” Rev. d Oenol. 29: 13–14.Google Scholar
  33. Dubourdieu, D., R.-M. Llauberes, and C. Olivier. 1986. “Estimation rapide des constituants macromdeculaires des mouts et des ving par chromatographie liquide haute pression de tamisage moleculaire.” Conn. Vigne Vin. 20: 119–123.Google Scholar
  34. Dubourdieu, D., J. C. Villettaz, C. Desplanques, and P. Ribéreau-Gayon, 1981. “Degradation enzymatique du glucane de Botrytis cinerea.” Conn. Vigne Vin 15: 161–177.Google Scholar
  35. Dunsford, P., and R. Boulton. 1981. “The kinetics of potassium bitartrate crystallization from table wines. Pts. 1 and 2.” Am. J. Enol. Vitic. 32:100–105 and 106–110.Google Scholar
  36. Edwards, T. L., V. L. Singleton, and R. Boulton. 1985. “Formation of ethyl esters of tartaric acid during wine aging: Chemical and sensory changes.” Am. J. Enol. Vitic. 36: 118–124.Google Scholar
  37. Escudier, J. L. and M. Moutounet. 1987. “Filtra-ton tangentielle et stabilisation tartrique des vins. II. Apport de la microfiltration tangentialle dans la stabilisation tartrique d’un vin rouge.” Rev. Fr. Oenol. 109: 44–50.Google Scholar
  38. Escudier, J. L., M. Moutounet, and P. Benard. 1987. “Filtration tangentielle et stabilisation tartrique des vins. I. Influence de l’ultrafiltration sur la cìnetique de cristallisation du bitartrate de potassium des vins.” Rev. Fr. Oenol. 108: 52–57.Google Scholar
  39. Esteve, J. L. 1988. “La stabilisation des vins contre les precipitations tartriques par systeme Crystalloprocess.” Rev. d Oenol. 47: 25–27.Google Scholar
  40. Ferenczi, S., A. Asvany, and L. Erczhegyi. 1982. “Stabilisation des vins contre les precipitations par le froid.” Bull. O.I.V. 613: 203–220.Google Scholar
  41. Feuillat, M., C. Charpentier, G. Picca, and P. Bernard. 1988. “Production des colloides par levures dans le vin mousseux elabore selon la methode champenoise.” Rev. Fr. Oenol. 111: 36–45.Google Scholar
  42. Fujinawa, S., G. Burns, and P. De La Teja. 1990. “Application of acid urease to reduction of urea in commercial wines.” Am. J. Enol. Vitic. 41: 350–354.Google Scholar
  43. Fukuda, Y. 1992. The behavior of protein fractions in white wines. M.S. thesis, Davis, CA: University of California.Google Scholar
  44. Gaillard, M., B. Ratsimba, and J. L. Favarel. 1990. “Stabilite tartrique des vins: Comparison de differents tests, mesure de l’influence des polyphenols.” Rev. Fr. Oenol. 123: 7–13.Google Scholar
  45. Gaillard, M., B. Ratsimba, and C. Laguerie. 1988. “La stabilisation tartrique: Reserche d’une plus grande securite.” Rev. d Oenol. 47: 21–23.Google Scholar
  46. Godshal, M. A. 1983. “Interference of plant polysaccharides and tannin in the Coomassie Blue G250 test for protein.” J. Food Sci. 48: 1346–1347.CrossRefGoogle Scholar
  47. Görtges, S., and R. Stocké. 1987. “Minikontakt-verfahren zur Beurteilung der Calciumtartratstabilitat.” Weinwirt. Tech. 123: 19–21.Google Scholar
  48. Hagen, M. M. 1979. “Les precipitation tartriques.” Rev. Fr. Oenol. 74: 63–69.Google Scholar
  49. Haushofer, H., and L. Szemeliker. 1973. “Die Forderung der Weinsteinausscheidung bei Weinen durch Zugabe von Impfkristallen, Kratzen an Glaswanden und Anwendung von Ultraschall.” Mitt. Kloster. 23: 259–284.Google Scholar
  50. Interesse, F. S., V. Allogio, F. Lamporelli, and G. D’avella. 1987. “Proteins in must estimated by size exclusion HPLC.” Food Chem. 23: 65–78.CrossRefGoogle Scholar
  51. Jakob, L. 1968. “Eiweissgehalt und Bentonitschönung von Wein.” Wein-Wissen. 23: 255–274.Google Scholar
  52. Jakob, L. 1969. “Eiweissgehalt und Eiweissstabilisier ung von Wein.” Deut. Weinbau. 24: 177–189.Google Scholar
  53. Kantz, K, and V. L. Singleton. 1990. “Isolation and determination of polymeric polyphenols using Sephadex LH-20 and analysis of grape tissue extracts.” Am. J. Enol. Vitic. 41: 223–228.Google Scholar
  54. Kean, C. E., and G. L. Marsh. 1957. “Investigations of copper complexes causing cloudiness in wines. 1. Chemical composition.” Am. J. Enol. 8: 80–86.Google Scholar
  55. Lay, H., and W. Leib. 1988. “Über das Vorkommen der Metalle Zink, Cadmium, Blei und Kupfer in Most, Wein und in den bei der Weinbereitung anfallenden Nebenprodukten.” Wein-Wissen. 43: 107–115.Google Scholar
  56. Lay, H., and E. Lemperle. 1981. “Kupfergehalt auf Weintrauben, in Traubenmost und in Wein nach Anwendung kupferhaltiger Peronospora-Fungizide.” Weinwirt. 117: 908–912.Google Scholar
  57. Llauberes, R. M. 1990. “Structure of an extracellular ß D-glucan from Pediococcus sp., a wine lactic bacteria.” Carbohydr. Res. 203: 103–107.CrossRefGoogle Scholar
  58. Llauberes, R. M., D. Dubourdieu, and J.-C. Villetaz. 1987. “Exocellular polysaccharide from Saccharomyces in wine.” J. Sci. Food Agric. 41: 277–286.CrossRefGoogle Scholar
  59. Maujean, A., L. Sausy, and D. Vallee1985. “Determination de la saturation en bitartrate de potassium d’un vin. Quantification des effets colloides protecteurs.” Rev. Fr. Oenol. 100: 39–49.Google Scholar
  60. Maujean, A., D. Vallee, and L. Sausy. 1986. “Influence de la granulometrie des cristaux de tartre de contact et des traitements et collages sur la cinetique de cristallisation du bitartrate de potassium dans les vins blancs.” Rev. Fr. Oenol. 104: 34–41.Google Scholar
  61. Moretti, R. H., and H. W. Berg. 1965. “Variability among wines to protein clouding.” Am. J. Enol. Vitic. 16: 69–78.Google Scholar
  62. Mourges, J., P. Benard, A. Matignon, T. Conte, and M. Mikolajczac. 1982. “Effet du chauffage de la vendage sur la solubilisation des polyosides et sur clarification des mouts, des moutes et des vin.” Sci. Aliments. 2: 83–96.Google Scholar
  63. Müller, T., and G. Würdig. 1978. “Das Minikontaktverfahren-ein einfacher Test zur Prüfung auf Weinsteinstabilitât.” Weinwirt. 114: 857–861.Google Scholar
  64. Müller, T., G. Würdig, G. Scholten, and G. Friedrich. 1990. “Bestimmung der Calciumtartrat- Sättigungstemperatur von Weinen durch Leitfähigkeitsmessung.” Mitt. Kloster. 40: 158–168.Google Scholar
  65. Müller-Spath, T. 1979. “La stabilisation du tartre avec le procede a contact.” Rev. Fr. Oenol. 73: 41–47.Google Scholar
  66. Murphey, J. M., J. R. Powers, and S. E. Spayd. 1989. “Estimation of soluble protein concentration of white wines using Coomassic Brilliant Blue G250.” Am. J. Enol. Vitic. 40: 189–193.Google Scholar
  67. Nishino, H., and H. Tanahashi. 1987. “Properties of nucleation and crystal growth of potassium bitartrate in wine.” Proc. 8th Intnl. Oenol. Symp., Cape Town, South Africa, 172–193.Google Scholar
  68. Oh, H., and J. E. Hoff. 1987. “pH dependence of complex formation between condensed tannins and proteins.” J. Food Sci. 52: 1267–1269.CrossRefGoogle Scholar
  69. Ough, C. S., E. A. Crowell, and J. Benz. 1982. “Metal content of California wines.” J. Food Sci. 47: 825–828.CrossRefGoogle Scholar
  70. Paezold, M., L. Dulau, and D. Dubourdieu. 1990. “Fractionnement et caracterisation des glycoprotenes dans les mouts de raisins blancs.” J. Int. Sci. Vigne Vin. 24: 13–28.Google Scholar
  71. Parentheon, A., and M. Feuillat. 1978. “Les colloides solubles du vin de champagne en relation avec le rumage.” Conn. Vigne Vin 3: 177–193.Google Scholar
  72. Peri, C., M. Riva, and P. Decto. 1988. “Crossflow membrane filtration of wines: Comparison of performance of ultrafiltration, microfiltration and intermediate cut-off membranes.” Am. J. Enol. Vitic. 39: 162–168.Google Scholar
  73. Pilone, F. B., and H. W. Berg. 1965. “Some factors affecting tartrate stability in wine.” Am. J. Enol. Vitic. 16: 195–211.Google Scholar
  74. PococK, K. F., and B. C. Rankine. 1973. “Heat test for detecting protein instability in wine.” Aust. Wine Brew. Spirit Rev. 91 (5): 42–43.Google Scholar
  75. Postel, W. 1983. “La solubilité et la cinétique de cristallisation du tartrate de calcium dans le vin.” Bull. O.I.V. 56 (629–630): 554–568.Google Scholar
  76. Postel, W., and E. Prasch. 1977. “Das Kontaktverfahren, eine neue Möglichkeit der Weinsteinstabilisierung.” Weinwirt. 113: 866–878.Google Scholar
  77. Read, S. M., and D. H. Northcote. 1981. “Minimization of variation in the response to different proteins of the Coomassie Blue G dye-Ginding assay for protein.” Anal. Biochem. 116: 53–64.CrossRefGoogle Scholar
  78. Rhein, O. H. 1977. “Weinsteinstabilisierung auf natürlichem Wege.” Weinwirt. 113: 515–519.Google Scholar
  79. Rhein, O. H., and W. Kappes. 1979. “Weinstein-Berechnungen.” Weinwirt. 115: 227–236.Google Scholar
  80. Rhein, O. H., and F. Neradt. 1979. “Tartrate stabilization by the Contact process.” Am. J. Enol. Vitic. 30: 265–271.Google Scholar
  81. Riese, H., and R. Boulton. 1980. “Speeding-up cold stabilization.” Wines and Vines 61:Nov. 68–69.Google Scholar
  82. Rodriguez-Clemente, R., and I. Correa-Gorospe. 1988. “Structural, morphological and kinetic aspects of potassium hydrogen tartrate precipitation from wines and ethanolic solutions.” Am. J. Enol. Vitic. 39: 169–179.Google Scholar
  83. Schmitt, A., R. Miltenberger, K. Curschmann, and H. Kohler. 1980. “Einfacher Test zur Bestimmung der Weinsteinstabilitât.” Deut. Weinbau 35: 194–196.Google Scholar
  84. Scott, R. S., T. G. Anders, and N. Hums. 1981. Rapid cold stabilization of wine by filtration. Am. J. Enol. Vitic. 32: 138–143.Google Scholar
  85. Serrano, M., and P. Ribéreau-Gayon. 1981. “Prevention des precipitations de bitartrate de potassium par le procede Vinipal.” Conn. Vigne Vin 15: 142–145.Google Scholar
  86. Spector, T. 1978. “Refinement of the Coomassie Blue method of protein quantification.” Anal. Biochem. 86: 142–146.CrossRefGoogle Scholar
  87. Sudraud, R., and J. Cape. 1983. “Elimination du calcium du vin par le procede par contact utilisant du tartrate neutre de calcium.” Rev. Fr. Oenol. 91: 19–22.Google Scholar
  88. Tal, M., A. Silberstein, and E. Nusser. 1980. “Why does Coomassie Brillant Blue R interact differently with different proteins? A partial answer.” J. Biol. Chem. 260: 9976–9980.Google Scholar
  89. Trioli, G. and C. S. Ouch. 1989. “Causes for inhibition of an acid urease from lactobacillus fermentus.” Am. J. Enol. Vitic. 40: 245–252.Google Scholar
  90. Trousdale, E. K., and R. B. Boulton. 1987. “The fractionation and quantification of wine proteins by three HPLC methods.” Proc. 38th. Ann. Meeting, Am. Soc. Enol. Vitic, p. 16.Google Scholar
  91. Tyson, P. J., E. S. Luis, W. R. Day, and T. H. Lee. 1981. “Estimation of soluble protein in must and wine by high performance liquid chromatography.” Am. J. Enol. Vitic. 32: 241–243.Google Scholar
  92. Tyson, P. J., E. S. Luis, and T. H. Lee. 1980. “Soluble protein levels in grapes and wine.” Proc. Cent. Symp., Davis, CA: University of California.Google Scholar
  93. Usseglio-Tomasset, L. 1976. “Les colloides glucidiques soluble des mouts et des vins.” Conn. Vigne Vin 10: 193–226.Google Scholar
  94. Usseglio-Tomasset, L., and R. Di Stefano. 1977. “Osservazioni sui costituenti azotati dei colloidi dei mosti, dei vini e dei colloidi ceduti dal lievito al substrato fermentativo.” Rev. Vitic. Enol. 11: 1–20.Google Scholar
  95. Usseglio-Tomasset, L., M. Ubigli, and L. Barbero. 1992. “The potassium acid tartrate oversaturation in wines.” Bull. O.I.V. 739–740: 703–719.Google Scholar
  96. Vallee, D., A. Bagard, C. Bloy, P. Bloy, and L. Bourde. 1990. “Appreciation de la stabilite tartrique des vins par la temperature de saturation -Influence du facteur temps sur la stabilite (duree de stockage).” Rev. Fr. Oenol. 126: 51–61.Google Scholar
  97. Vialatte, C. 1984. “Test de stabilite bitartrate de potassium (Boulton).” Rev. Oenol. 34: 20.Google Scholar
  98. Vialatte, G. 1979. “Stabilisation des vins en continu, vis-a-vis, du bitartrate de potassium.” Rev. Fr. Oenol. 73: 67–71.Google Scholar
  99. Villettaz, J.-C. 1988. “Les colloides du mout et du vin.” Rev. Fr. Oenol. 111: 23–27.Google Scholar
  100. Villettaz, J.-C., D. Steiner, and H. Trogus. 1984. “The use of a beta-glucanase as an enzyme in wine clarification and filtration.” Am. J. Enol. Vitic. 35: 253–256.Google Scholar
  101. Walter, E. G. 1970. “Stabilization of wine by passage through a column of potassium hydrogen tartrate crystals.” U.S. Patent 3,498, 795.Google Scholar
  102. Waters, E. J., W. Wallace, and P. J. Williams. 1991. “Heat haze characteristics of fractionated wine proteins.” Am. J. Enol. Vitic. 42: 123–127.Google Scholar
  103. Waters, E. J., W. Wallace, M. E. Tate, and P. J. Williams. 1993. “Isolation and partial characterization of a natural haze protective factor from wine.” J. Agric. Food Chem. 41: 724–730.CrossRefGoogle Scholar
  104. Willy, J., R. Weinard, and H. Dietrich. 1991. “Beeinflusst Crossflow die Weinsteinstabilitât?” Weinwirt. Tech. 127: 24–29.Google Scholar
  105. Wucherpfennig, K, and H. Dietrich. 1983. “Bestimmung des Kolloidgehaltes von Weinen.” Lebens. 15: 246–253.Google Scholar
  106. Wucherpfennig, K., and H. Dietrich. 1989. “The importance of colloids for clarification of musts and wines.” Vitic. Enol. Sci. 44: 1–12.Google Scholar
  107. Wucherpfennig, K., H. Dietrich, and R. Fauth. 1984. “über den Einfluss von Polysacchariden auf die Klärung und Filterfähigkeit von Weinen unter besonderer Berücksichtigung des Botrytisglucans.” Deut. Lebens. Rund. 80: 38–44.Google Scholar
  108. Würdig, G. 1976. “Schleimsäure—ein Inhaltsstoff von Weinen aus botrytisfaulem Lesegut.” Weinwirt. 112(1–2):16–17.Google Scholar
  109. Würdig, G., T. Müller, and G. Friedrich. 1980a. “Methode pour caracteriser la stabilite du vin vis-a-vis du tartre par determination de la temperature de saturation.” Bull. 0.LV. 613: 220–228.Google Scholar
  110. Würdig, G., T. Müller, and G. Friedrich. 1980b. “Untersuchungen zur Weinsteinstabilität. Bestimmung der Sättigungstemperatur von Weinen durch Leitfähigkeitsmessung.” Weinwirt. 116: 720–726.Google Scholar
  111. Würdig, G., T. Müller, and G. Friedrich. 1983. “Prüfung auf Weinsteinstabilität in Traubensäften durch Bestimmung der Weinsteinsättigungstemperatur.” Flüss. Obst. 50: 564–568.Google Scholar
  112. Würdig, G., T. Müller, and G. Friedrich. 1985. “Untersuchungen zur Weinsteinstabilität. 3. Mitteilung: Bestimmung der Weinsteinsättigungstemperatur durch verbesserte Leitfähigkeitmessung.” Weinwirt. Tech. 121: 188–191.Google Scholar
  113. Yokotsuka, K., K Nozuki, and T. Kushida. 1983. “Turbidity formation caused by interaction of must proteins with wine tannins.” J. Ferm. Technol. 61: 413–416.Google Scholar
  114. Yokotsuka, K, and V. L. Singieton. 1987. “Interactive precipitation between graded peptides from gelatin and specific grape tannin fractions in wine-like model solutions.” Am. J. Enol. Vitic. 38: 199–206.Google Scholar
  115. Yokotsuka, K., M. Yoshii, T. Aihara, and T. Kushida. 1977. “Isolation and characterization of proteins from juices, musts and wines from Japanese grapes.” J. Ferm. Technol. 55: 510–515.Google Scholar
  116. Zimmer, E., C.-D. Patz, and H. Dietrich. 1992. “Direct determination of molecular weight distribution of high molecular substances in wines and juices.” Vitic. Enol. Sci. 47: 121–129.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Roger B. Boulton
    • 1
  • Vernon L. Singleton
    • 1
  • Linda F. Bisson
    • 1
  • Ralph E. Kunkee
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations