Juice and Wine Acidity

  • Roger B. Boulton
  • Vernon L. Singleton
  • Linda F. Bisson
  • Ralph E. Kunkee


The acidity of a juice or wine, in particular the pH, plays an important role in many aspects of winemaking and wine stability (see also Chapters 3, 8, and 12). The ability of most bacteria to grow, the solubility of the tartrate salts, the effectiveness of sulfur dioxide, ascorbic acid, and enzyme additions, the solubility of proteins and effectiveness of bentonite, the polymerization of the color pigments, as well as oxidative and browning reactions are all influenced by the juice or wine pH. The titratable acidity is an important parameter in the sensory evaluation of finished wines. It and the pH are also important in aging reactions.


Succinic Acid Malic Acid Buffer Capacity Tartaric Acid Titratable Acidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abgueguen, O., and R. B. Boulton. 1993. “The crystallization kinetics of calcium tartrate from model solutions and wines.” Am. J. Enol. Vitic. 44: 65–75.Google Scholar
  2. Aylward, G. H., and T. J. V. Findlay. 1966. Chemical Data Book. 2nd ed., Sydney, Australia: John Wiley & Sons.Google Scholar
  3. Berg, H. W., and R. M. Keefer. 1958. “Analytical determination of tartrate stability in wine: 1. Potassium bitartrate.” Am. J. Enol. 9: 180–193.Google Scholar
  4. Berg, H. W., and R. M. Keefer. 1959. “Analytical determination of tartrate stability in wine: 2. Calcium tartrate.” Am. J. Enol. 10:105–109.Google Scholar
  5. Boulton, R. 1980a. “The general relationship between potassium, sodium and pH in grape juices and wines.” Am. J. Enol. Vitic. 31: 182–186.Google Scholar
  6. Boulton, R. 1980b. “A hypothesis for the presence, activity and role of potassium/hydrogen, adenosine triphosphatases in grapevines.” Am. J. Enol. Vitic. 31: 283–287.Google Scholar
  7. Boulton, R. 1980c. “The relationships between total acidity, titratable acidity and pH in grape tissue.” Vitis 19: 113–120.Google Scholar
  8. Boulton, R. 1980d. “The relationships between total acidity, titratable acidity and pH in wine.” Am. J. Enol. Vitic. 31: 76–80.Google Scholar
  9. Butler, J. N. 1964. Ionic Equilibrium. Reading, MA: Addison-Wesley.Google Scholar
  10. Curvelo-Garcia A. S. 1987. “0 producto de solubilidade do tartarato de calcio em meios hidroalcoolicos em funcâo dos seus factores determinantes.” Ciena Tec. Vitic. 6: 19–28.Google Scholar
  11. Daniels, F., and R. A. Alberty. 1975. Physical Chem-istry,4th ed. New York: John Wiley & Sons.Google Scholar
  12. Dawson, R. M. C., D. C Elliott, W. H. Elliott, and K. M. Jones. 1969. Data for Biochemical Research. Oxford, UK Clarendon Press.Google Scholar
  13. Du Plessis, C. S. 1968. “Changes in major organic acids of ripening grapes.” S. Afric. J. Agric. Sci. 11: 237–248.Google Scholar
  14. Edwards, T. L., V. L. Singleton, and R. B. Boulton. 1985. “Formation of ethyl esters of tartaric acid during wine aging: Chemical and sensory effects.” Am. J. Enol. Vitic. 36: 118–124.Google Scholar
  15. Johnson, T. L., and C. W. Nagel. 1976. “Composition of central Washington grapes during maturation.” Am. J. Enol. Vitic. 27: 15–20.Google Scholar
  16. King, Jr., A. D., J. D. Ponting, D. W. Sanshuck, R. Jackson, and K. Mihara. 1981. “Factors affecting death of yeast by sulfur dioxide.” J. Food Protect. 44: 92–97.Google Scholar
  17. Leonard, R. T., and T. K. Hodges. 1973. “Characterization of plasma membrane-associated adenosine triphosphatase activity in oat roots.” Plant Physiol. 52: 6–12.CrossRefGoogle Scholar
  18. Ough C. S., and M. A. Amerine. 1988. Methods for Analysis of Musts and Wines,2nd ed. New York: John Wiley & Sons.Google Scholar
  19. Peynaud, E., and A. Maurie. 1956. “Nouvelles recherches sur la maturation du raisin dans le Bordelais, annees 1952, 1953 et 1954.” Ann. Technol. Agric. 5: 111–139.Google Scholar
  20. Rankine, B. C., J. C. M. Fornachon, E. W. Boehm, and K. M. Cellier. 1971. “The influence of grape variety, climate and soil on grape composition and the composition and quality of table wines.” Vitis 10: 33–50.Google Scholar
  21. Saito, K. and Z. Kasai. 1978. “Conversion of labelled substrates to sugars, cellwall polysaccharides, and tartaric acid in grape berries.” Plant Physiol. 62: 215–219.CrossRefGoogle Scholar
  22. Segal, I. 1976. Biochemical Calculations. 2nd ed., New York: John Wiley & Sons.Google Scholar
  23. Sen B., R. N. Roy, J. J. Gibbons, D. A. Johnson, and L. H. Adcock. 1979. “Computational techniques of ionic processes in water-organic mixed solvents.” In Thermodynamic Behavior of Electrolytes in Mixed Solvents, W. F. Furter, Ed., pp. 215–248. Adv. Chem. Ser. 177, Washington, DC: American Chemical Society.Google Scholar
  24. Steele, J. T., and R. E. Kunkee. 1978. “Deacidification of musts from the western United States by the calcium double-salt precipitation process.” Am. J. Enol. Vitic. 29: 153–160.Google Scholar
  25. Steele, J. T., and R. E. Kunkee. 1979. “Deacidification of high acid California wines by calcium double-salt precipitation.” Am. J. Enol. Vitic. 30: 227–231.Google Scholar
  26. Stranks, D. R., M. L. Heffernan, K. C. Lee Dow, P. T. McTigue, and G. R. A. Withers. 1965. Chemistry—A Structural View. London: Melbourne University Press.Google Scholar
  27. Usseglio-Tomasset, L., and P. D. Bosia. 1978. “Determinazione delle constanti di dissociazione dei principali acidi del vino in soluzioni idroalcoliche di interesse enologico.” Rivista Vitic. Enol. 31: 380–403.Google Scholar
  28. Usseglio-Tomasset, L., and P. D. Bosia. 1984. “La Prima costante di dissociazione dell’acido solforoso.” Vini d Italia 26 (5): 7–14.Google Scholar
  29. Weast, R. C. 1977. CRC Handbook of Chemistry and Physics, 58th ed. Cleveland, OH: CRC Press.Google Scholar
  30. Wejnar, R. 1971. “Etude l’influence de l’acide tartrique et l’acide malique sur le pH du vin.” Conn. Vigne Vin 5: 535–562.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Roger B. Boulton
    • 1
  • Vernon L. Singleton
    • 1
  • Linda F. Bisson
    • 1
  • Ralph E. Kunkee
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations