The Role of Sulfur Dioxide in Wine

  • Roger B. Boulton
  • Vernon L. Singleton
  • Linda F. Bisson
  • Ralph E. Kunkee


While the use of sulfur dioxide in winemaking dates back to Egyptian and Roman times (Bioletti 1912), the full extent of its role in wines is often not understood because of the multiple activities and reactions in which it is involved. It had been estimated in the early part of this century that the free forms possessed approximately 50 times the antiseptic activity of the bound forms (Bioletti 1912). While most of the sulfur dioxide found in wine is deliberately added to the must, juice, or wine, significant amounts are normally produced by yeast during fermentation (Weeks 1969; Bidan and Collon 1985).


Sulfur Dioxide White Wine Wine Yeast Dissociation Rate Constant Henry Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amano, Y., M. Kubota, and M. Kagami. 1979. “Oxygen uptake of Koshu grape must and its control.” Hokkokogaku Kaishi 57: 92–101.Google Scholar
  2. Amerine, M. A., H. W. Berg, and W. V. Cruess. 1972. The Technology of Wine Making, p. 110. Westport, CT: Avi Publishing.Google Scholar
  3. Amerine, M. A., and E. B. Roessler. 1983. Wines-Their Sensory Evaluation, 2nd ed., p. 37. New York: Freeman Company.Google Scholar
  4. Anacleto, J., and N. VAN Uden. 1982. “Kinetics and activation energetics of death in Saccharomyces cerevisiae induced by sulfur dioxide.” Biotechnol. Bioeng. 24: 2477–2486.CrossRefGoogle Scholar
  5. Bailey J. E., and D. F. Ollis. 1977. Biochemical Engineering Fundamentals, p. 407. New York: McGraw-Hill.Google Scholar
  6. Beech, F. W., L. F. Burroughs, C. F. Timberlake, and G. C. Whiting. 1979. “Progres recents sur l’aspect chimique et antimicrobienne de l’anhydride sulfureux.” Bull. O.I.V. 52 (586): 1001–1022.Google Scholar
  7. Beech, F. W., and S. Thomas. 1985. “Action antimicrobienne de l’anhydride sulfureux.” Bull. O.I.V. 58 (652–653): 564–581.Google Scholar
  8. Berg, H. W., and M. Akiyoshi. 1956. “Some factors involved in the browning of white wines.” Am. J. Enol. 7:1–7.Google Scholar
  9. Bidan, P., and Y. Collon. 1985. “Metabolisme du soufre chez la levure.” Bull. O.I.V. 58 (652–653): 544–563.Google Scholar
  10. Bioletti, F. T. 1912. “Sulfurous acid in winemaking.” 8th Int. Cong. Appl. Chem. 14:31–59.Google Scholar
  11. Bobet, R. A., A. C. Noble, and R. B. Boulton. 1990. “Kinetics of ethanethiol and diethyl disulfide interconversion in wine-like solutions.” J. Agric. Food Chem. 38: 449–452.CrossRefGoogle Scholar
  12. Brun, P., C. Gasquet, S. de Stoutz, and A. Nicoli. 1961. “Application de l’amperometrie a la determination de l’anhydride sulfureux dans les vins.” Ann. Fats. Exp. Chim. 54: 412–420.Google Scholar
  13. Burroughs, L. F., and A. H. Sparks. 1973. “Sulphite-binding power of wines and ciders. 1. Equilibrium constants for the dissociation of carbonyl bisulphite compounds.” J. Sci. Food Agric. 24: 187–198.CrossRefGoogle Scholar
  14. Burroughs, L. F., and A. H. Sparks. 1973. “Sulphite-binding power of wines and ciders. II. Theoretical consideration and calculation of the sulphite-binding equilibria.” J. Sci. Food Agric. 24: 199–206.CrossRefGoogle Scholar
  15. Burroughs, L. F., and A. H. Sparks. 1973. “Sulphite-binding power of wines and ciders. III. Determination of carbonyl compounds in a wine and calculation of its sulphite-binding power.” J. Sci. Food Agric. 24: 207–217.CrossRefGoogle Scholar
  16. Burton, H. S., D. J. Mcweeny, and D. O. Biltcliffe. 1963. “Non-enzymic browning: The role of unsaturated carbonyl compounds as intermediates and of SO2 as an inhibitor of browning.” J. Sci. Food Agric. 14: 911–920.CrossRefGoogle Scholar
  17. Collins, T. S., and R. B. Boulton. 1995. “A rapid method for the detection of free sulfur dioxide in wine using capillary electrophoresis.” Am. J. Enol. Vitic. (In press).Google Scholar
  18. Cruess, W. V. 1912. “The effect of sulfurous acid on fermentation organisms.” Ind. Eng. Chem. 4: 581–585.CrossRefGoogle Scholar
  19. Dubernet, M., and P. Ribéreau-Gayon. 1973. “Presence et significance dans le mouts et vins de la tyrosinase du raisin.” Conn. Vigne Vin 7: 283–302.Google Scholar
  20. Embs, R. J., and P. Markakis. 1965. “The mechanism of sulfite inhibition of browning caused by polyphenol oxidase.” J. Food Sci. 30: 753–758.CrossRefGoogle Scholar
  21. Fornachon, J. C. M. 1963. “Inhibition of certain lactic acid bacteria by free and bound sulphur dioxide.” J. Sci. Food Agric. 14: 857–862.CrossRefGoogle Scholar
  22. Foust, A. S., L. A. Wenzel, C. W. Clump, L. Maus, and L. B. Andersen. 1960. Principles of Unit Operations. New York: John Wiley & Sons.Google Scholar
  23. Fridovich. I., and P. Handler. 1961. “Detection of free radicals generated during enzymic oxidations by the initiation of sulfite oxidation.” J. Biol. Chem. 236: 1836–1840.Google Scholar
  24. Fuller, E. C., and R. H. Crist. 1941. “The rate of oxidation of sulfite ions by oxygen.” J. Am. Chem. Soc. 63: 1644–1650.CrossRefGoogle Scholar
  25. Halperin, J., and H. Taube. 1952. “The transfer of oxygen atoms in oxidation-reduction reactions. IV. The reaction of hydrogen peroxide with sulfite and thiosulfate, and of oxygen, manganese dioxide and permanganate with sulfite.” J. Am. Chem. Soc. 74: 380–382.CrossRefGoogle Scholar
  26. Hammond, S. M., and J. G. Carr. 1976. “The antimicrobial activity of S02-With particular reference to fermented and non-fermented fruit juices.” In Inhibition and Inactivation of Vegetative Microbes, F. A. Skinner and W. B. Hugo, Eds. London: Academic Press.Google Scholar
  27. Hood, A. 1983. “Inhibition of growth of wine lactic-acid bacteria by acetaldehyde-bound sulphur dioxide.” Aust. Grapegrower & Winemaker 232: 34–43.Google Scholar
  28. Ingram, M. 1947. “An electrometric indicator to replace starch in iodine titrations of sulphurous acid in fruit juices.” J. Soc. Chem. Ind. 66: 50–55.CrossRefGoogle Scholar
  29. Jaulmes, P., and J. Bres. 1973. “Cinetique de l’action de l’anhydride sulfureux sur la thiamine et la cocarboxylase.” Bull. O.I.V. 46 (508): 507–515.Google Scholar
  30. Katchmer, J. 1990. Effects of sulfur dioxide and bisulfite-binding compounds on short term yeast viability in a model wine solution. M.S. thesis, Davis, CA: University of California.Google Scholar
  31. Kielhöfer, E., and G. Würdig. 1960. “Die an unbekannte Weinbestandteile gebundene schweflige Saure (Rest SO2) und ihre Beduetung fur den Wein (I).” Weinberg und Keller 7: 313–328.Google Scholar
  32. King, A. D. JR., J. D. Ponting, D. W. Sanshuck, R. Jackson, and K. Mihara. 1981. “Factors affecting death of yeast by sulfur dioxide.” J. Food Prot. 44: 92–97.Google Scholar
  33. Kuriowa, Y., and N. Hashimoto. 1970. “Sulfur compounds responsible for beer flavor.” Brewer’s Digest 45 (5): 44–54.Google Scholar
  34. Lafon-Lafourcade, S., and E. Peynaud. 1974. “Sur l’action antibacterienne de l’anhydride sulfureux sous forme libre et sous forme combinée.” Conn. Vigne Vin 8: 187–203.Google Scholar
  35. Leichter, J., and M. A. Joslyn. 1969. “Kinetics of thiamin cleavage by sulphite.” Biochem. J. 113: 611–615.Google Scholar
  36. Lu Valle, J. E. 1952. “The reaction of quinone and sulfite. I. Intermediates.” J. Am. Chem. Soc. 74: 2970–2977.CrossRefGoogle Scholar
  37. Macris, B. J., and P. Markakis. 1974. “Transport and toxicity of sulfur dioxide in Saccharomyces cerevisiae var ellipsoideus.” J. Sci. Food Agric. 25: 21–29.CrossRefGoogle Scholar
  38. Mader, P. M. 1958. “Kinetics of the hydrogen peroxide-sulfite reaction in alkaline solution.” J. Am. Chem. Soc. 80: 2634–2638.CrossRefGoogle Scholar
  39. Mayer, K, U. Vetsch, and G. Pause. 1975. “Hemmung des biologischen Saurabbaus durch gebundene schweflige Saure.” Schw. Z. Obst-Wein. 23: 590–596.Google Scholar
  40. Mccord, J. M., and I. Fridovich. 1969. “The utility of superoxide dismutase in studying free radical reactions.” J. Biol. Chem. 244: 6056–6063.Google Scholar
  41. Minarik, E. 1978. “Progres recents dans la connaissance des phenomenes microbiologiques en vinification.” Bull. 01.V. 51 (567): 352–367.Google Scholar
  42. Müller-Späth, H. 1982. “Die Rolle der Kohlensaure beim Stillwein.” Weinwirt. 118: 1031–1037.Google Scholar
  43. Müller-Thurgau, H., and A. Osterwalder. 1915. “Prevention by sulfur dioxide of alcoholic fermentation in fruit and grape juice.” Landwirt. Jahrb. Schweiz. 29: 421–432.Google Scholar
  44. Ough, C. S. 1983. “Sulfur dioxide and sulfites.” In: Antimicrobials in Foods. A. L. Branen and P. M. Davidson, Eds., pp. 177–203. New York: Marcel Dekker.Google Scholar
  45. Ough, C. S. 1985. “Some effects of temperature and SO2 on wine during simulated transport or storage.” Am. J. Enol. Vitic. 36: 18–22.Google Scholar
  46. Ough, C. S., and M. A. Amerine. 1988. Methods for Analysis of Musts and Wines, 2nd Ed. New York: Wiley Interscience.Google Scholar
  47. Pataky, B. 1958. “Die jodometrische Bestimmung von Schwefeldioxyd in Wien-Die elektrometrische Endpunktbestimmung.” Mitt. Kloster. 8: 199–204.Google Scholar
  48. Perry, M. C., and G. D. Beal. 1920. “The quantities of preservatives necessary to inhibit and prevent alcoholic fermentation and the growth of molds.” Ind. Eng. Chem. 12: 253–255.CrossRefGoogle Scholar
  49. Perscheid, M., and F. Zürn. 1977. “Der Einfluss von Oxydationsvorgangen auf die Weinqualität.” Weinwirt. 113: 10–12.Google Scholar
  50. Pfleiderer, G., D. Jekel, and T. Weiland. 1956. “Uber der Einwirkung von Sulfit auf einige DPN hydrierende Enzyme.” Biochem. Z. 328: 187–194.Google Scholar
  51. Pontallier, P., J. P. Callede, and P. Ribéreau-Gayon. 1982. “Dosage de SO2 libre dans les vins rouges par titrage potentiometrique automatique. Mise en evidence d’un comportment specifique dans les vins jeunes.” Sci. Aliments 2: 329–339.Google Scholar
  52. Poulton, J. R. S. 1970. “Chemical protection of wine against oxidation.” Die Wynboer 466 July:22–23.Google Scholar
  53. Rahn, O., and J. E. Conn. 1944. “Effect of increase in acidity on antiseptic efficiency.” Ind. Eng. Chem. 36: 185–187.CrossRefGoogle Scholar
  54. Rhem, H. J. 1964. “The antimicrobial action of sulphurous acid.” In Microbial Inhibitors in Food, Ed. Molin, N. Stockholm, Sweden: Almquist, and Wiksells.Google Scholar
  55. Rhem, H. J., P. Wallnofer, and H. Wittmann. 1965. “Beitrag zur Kenntnis der antimickrobeillen Wirkung der schwefligen Saure. IV. Dissoziation und antimikrobeille Wirkung einiger Sulfonate.” Z. Lebens. Forsch. 127: 72–85.CrossRefGoogle Scholar
  56. Rhem, H. J., and H. Wittmann. 1962. “Beitrag zur Kenntnis der antimickrobeillen Wirkung der schwefligen Saure. I. Ubersicht uber einflussnehmende Faktoren auf die an–timikrobeillen Wirkung der schwefligen Saure.” Z. Lebens. Forsch. 118: 413–425.CrossRefGoogle Scholar
  57. Ribéreau-Gayon, J. 1933. Contribution des oxydations et reductions dans les vins. Application a l’etude du vieillissement et des casses. Doc. thesis, Bordeaux, France: University of Bordeaux.Google Scholar
  58. Romano, P., and G. Suzzi. 1992. “Sulfur dioxide and wine microorganisms.” In Wine-Microbiology and Biotechnology. G. H. Fleet, Ed. pp. 373–393. Chur, Switzerland: Harwood Academic Publishers.Google Scholar
  59. Rossi, J. A., and V. L. Singleton. 1966. “Contributions of grape phenols to oxygen absorption and browning of wines.” Am. J. Enol. Vitic. 17: 231–239.Google Scholar
  60. Sawyer, D. T. 1991. Oxygen Chemistry, p. 112. New York: Oxford University Press.Google Scholar
  61. Sayavedra-Soto, L. A., and M. W. Montgomery. 1986. “Inhibition of polyphenoloxidase by sulfite.” J. Food. Sci. 51: 1531–1536.CrossRefGoogle Scholar
  62. Schanderl, H. 1959. Die Mikrobiologie des Mostes und Weines. 2nd Ed. Stuttgart, Germany: Eugen Ulmer.Google Scholar
  63. Schimz, K-L. 1980. “The effect of sulfite on the yeast Saccharomyces cerevisiae.” Arch. Microbiol. 125: 89–95.CrossRefGoogle Scholar
  64. Schimz, K-L., and H. Holzer. 1979. “Rapid decrease of ATP content in intact cells of Saccharomyces cerevisiae after incubation with low concentrations of sulfite.” Arch. Microbiol. 121: 225–229.CrossRefGoogle Scholar
  65. Schneyder, J., and G. Vlcek. 1977. “Massanalytische Bestimmung der freien Schwefligen Saure in Wein mit Jodsaure.” Mitt. Klost. Rebe Wein Obstbau Frucht. 27: 87–88.Google Scholar
  66. Schopper, J.-F., and J. Aerny. 1985. “Le role de l’anhydride sulfureux en vinification.” Bull. O LV. 58 (652–653): 515–542.Google Scholar
  67. Schroeter, L. C. 1966. Sulfur Dioxide. Applications in Foods, Beverages and Pharmaceuticals. Oxford, UK Pergamon Press.Google Scholar
  68. Sherwood, T. K 1925. “Solubilities of sulfur dioxide and ammonia in water.” Ind. Eng. Chem. 17: 745–747.CrossRefGoogle Scholar
  69. Stratford, M., and A. H. Rose. 1986. “Transport of sulphur dioxide by Saccharomyces cerevisiae.” J. Gen. Microbiol. 132: 1–6.Google Scholar
  70. Sudraud, P., and S. Chauvet. 1985. “Activite antilevure de l’anhydride sulfureux moleculaire.” Conn. Vigne Vin 19: 31–40.Google Scholar
  71. Tenscher, A. C. 1986. The kinetics of sulfite-hydrogen-sulfite-binding with acetaldehyde and pyruvic acid. M.S. thesis, Davis, CA: University of California.Google Scholar
  72. Usseglio-Tomasset, L., and P. D. Bosia. 1984. “La prima constante di dissociazione dell’acido solforoso.” Vini d Italia 26: 7–14.Google Scholar
  73. Uzuka, Y., and T. Nomura. 1986. “Determination of sulfite resistance in wine yeasts.” Proc. 6th Aust. Wine Ind. Tech. Conf., T. H. Lee, Ed., p. 141–145.Google Scholar
  74. Uzuka, Y., R. Tanaka, T. Nomura, and K Tanaka. 1985. “Method for the determination of sulfite resistance in wine yeasts.” J. Fenn. Technol. 63: 107–114.Google Scholar
  75. Vahl, J. M., and J. E. Converse. 1980. “Ripper procedure for determining sulfur dioxide in wine.” J. Assoc. Off. Anal. Chem. 63: 194–199.Google Scholar
  76. Valero, E., R. Varon, and F. Garcia-Carmona. 1992. “Kinetic study of the metabisulfite on polyphenol oxidase.” J. Agric. Food Chem. 40: 904–908.CrossRefGoogle Scholar
  77. Uden, N., P. Abranches, and C. Cabeca-Silva. 1968. “Temperature functions of thermal death in yeasts and their relation to the maximum temperature for growth.” Arch. Mikrobiol. 61: 381–393.CrossRefGoogle Scholar
  78. Vanderschmitt, D. J., K. S. Vitos, F. M. Huenekens, and K. G. Scrimgeour. 1967. “Addition of sulfite to folate and dihydrofolate.” Arch. Biochem. Biophys. 122: 448–493.Google Scholar
  79. Vas, K. 1949. “The equilibrium between glucose and sulfurous acid.” J. Soc. Chem. Ind. 68: 340–343.CrossRefGoogle Scholar
  80. Villeton-Pachot, J. P., M. Persin, and J. Y. Gal. 1980. “Titrage coulometrique du dioxyde de soufre dans les vins avec detection electrochimique du point equivalent.” Analysis 8 (9): 422–427.Google Scholar
  81. Walker, J. R. L. 1975. “Enzymic browning in foods: A review.” Enz. Technol. Dig. 4: 89–100.Google Scholar
  82. Wedzicha, B. L. 1984. Chemistry of Sulphur Dioxide in Foods. London: Elsevier Applied Science Publishers.Google Scholar
  83. Wedzicha, B. L., and O. Lamikanra. 1987. “Kinetics of autoxidation of sulphur (IV) oxospecies in aqueous ethanol.” Food Chem. 23: 193–205.CrossRefGoogle Scholar
  84. Weeks, C. 1969. “Production of sulfur dioxide-binding compounds and of sulfur dioxide by two Saccharomyces yeasts.” Am. J. Enol. Vitic. 20: 31–39.Google Scholar
  85. Wildenradt H. L., and V. L. Singleton. 1974. “The production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging.” Am. J. Enol. Vitic. 25: 119–126.Google Scholar
  86. Willson, K. S., W. O. Walker, C. V. Mars, and W. R. Rinelli 1943. “Liquid sulfur dioxide in the fruit industries.” Fruit Prod. J. 23: 72–82.Google Scholar
  87. Würdig, G., and H. A. Schlotter. 1968. “SO2 bildung durch Sulfatreduktion wahrend der Garung. I. Versuche und Beobachtungen in der Praxis.” Wein-Wissen. 23: 356–371.Google Scholar
  88. Yang. S. F. 1970. “Sulfoxide formation from me-thionine or its sulfide analogs during aerobic oxidation of sulfite.” Biochemistry 9: 5008–5014.CrossRefGoogle Scholar
  89. Yang. S. F. 1973. “Destruction of tryptophan during the aerobic oxidation of sulfite ions.” Environ. Res. 6: 395–402.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Roger B. Boulton
    • 1
  • Vernon L. Singleton
    • 1
  • Linda F. Bisson
    • 1
  • Ralph E. Kunkee
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations