Homocysteine, Folic Acid, and Cardiovascular Disease Risk

  • Shirley A. A. Beresford
  • Carol J. Boushey
Part of the Nutrition ◊ and ◊ Health book series (NH)


Homocysteine, an amino acid by-product of methionine metabolism, has been attracting a lot of interest recently in connection with a number of different disease endpoints. Principal among these is cardiovascular disease. Historically, the fmding of thrombotic complications in the rare hereditary disease of homocystinuria led to the hypothesis that the carriers for this condition might have an increased frequency of vascular disease. Many studies were, therefore, done to relate elevated homocyst(e)ine blood levels—whether genetic in origin or not—to vascular disease. The majority of these investigations showed an association of hyperhomocyst(e)inemia with coronary artery disease, cerebrovascular disease, and peripheral vascular disease. Some of the interest in homocysteine comes about because of the interconnection between its metabolic pathway and that of folic acid.


Folic Acid Homocysteine Level Cardiovascular Disease Risk Plasma Homocysteine Folate Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mudd SH, Levy HL, Skovby E Disorders of transsulfuration. In: The Metabolic Basis of Inherited Disease, 6th ed. Scriver CR, Beaudet AL, Sly WS, Valle D, eds. New York: McGraw-Hill, 1989; pp.693–734.Google Scholar
  2. 2.
    Ueland PM, Refsum H. Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy. J Lab Clin Med 1989; 114:473–501.Google Scholar
  3. 3.
    Mason JB, Miller JW. The effects of vitamins B12, B6, and folate on blood homocysteine levels. Ann NY Acad Sci 1992; 669:197–203.CrossRefGoogle Scholar
  4. 4.
    Selhub J, Miller JW. The pathogenesis of homocysteinemia: interruption of the coordinate regulation of S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr 1992; 55:131–138.Google Scholar
  5. 5.
    Brattstrom LE, Hultberg BL, Hardebo JE. Folic acid responsive postmenopausal homocysteinemia. Metabolism 1985; 34:1073–1077.CrossRefGoogle Scholar
  6. 6.
    Kang S, Wong PWK, Malinow MR. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Ann Rev Nutr 1992; 12:279–298.CrossRefGoogle Scholar
  7. 7.
    Araki A, Sako Y. Determination of free and total homocysteine in human plasma by high-performance liquid chromatohraphy with fluorescence detection. J Chromatogr 1987; 422:43–52.CrossRefGoogle Scholar
  8. 8.
    Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH. Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem 1993; 39:1764–1779.Google Scholar
  9. 9.
    Malinow MR. Role of plasma homocyst(e)ine in arterial occlusive diseases. Clin Chem 1994; 40:857,858.Google Scholar
  10. 10.
    Andersson A, Brattstrom L, Israelsson B, Isaksson A, Hamfelt A, Hultberg B. Plasma homocysteine before and after methionine loading with regard to age, gender, and menopausal status. Eur J Clin Invest 1992; 22:79–87.CrossRefGoogle Scholar
  11. 11.
    Shipchandler MT, Moore EG. Rapid, fully automated measurement of plasma homocyst(e)ine with the Abbott Imxr Analyzer. Clin Chem 1995; 41:991–994.Google Scholar
  12. 12.
    Boers GHJ, Smals AGH, Trijbels FJM, Fowler B, Bakkeren JAJM, Schoonderwaldt HC, et al. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. New Engl J Med 1985; 313:709–715.CrossRefGoogle Scholar
  13. 13.
    Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, et al. Hyperhomocysteinemia: an independent risk factor for vascular disease. New Engl J Med 1991; 324:1149–1155.CrossRefGoogle Scholar
  14. 14.
    Brattstrom L, Lindgren A. Hyperhomocysteinemia as a risk factor for stroke. Neurol Res 1992; 14:81–84.Google Scholar
  15. 15.
    McGill JJ, Mettler G, Rosenblatt DS, Scriver CR. Detection of heterozygotes for recessive alleles. Homocyst(e)inemia: paradigm of pitfalls in phenotypes. Am J Med Genet 1990; 36:45–52.CrossRefGoogle Scholar
  16. 16.
    Berg K, Malinow MR, Kierulf P, Upson B. Population variation and genetics of plasma homocyst(e)ine level. Clin Genet 1992; 41:315–321.CrossRefGoogle Scholar
  17. 17.
    Reed T, Malinow MR. Chritian JC, Upson B. Estimates of heritability of plasma homocyst(e)ine levels in aging adult male twins. Clin Genet 1991; 425–428.Google Scholar
  18. 18.
    Genest JJ, McNamara JR, Upson B, Salem DN, Ordovas JM, Schaefer EJ, et al. Prevalence of familial hyperhomocyst(e)inemia in men with premature coronary artery disease. Arteriosclerosis Throb. 1991; 11:1129–1136.CrossRefGoogle Scholar
  19. 19.
    Williams RR, Malinow MR, Hunt SC, Upson B, Wu LL, Hopkins PN, et al. Hyperhomocyst(e)inemia in Utah Siblings with early coronary disease. Coronary Artery Dis 1990; 1:681–685.CrossRefGoogle Scholar
  20. 20.
    Mudd SH, Levy HL, Skovby E Disorders of transsulfuration. In: The Metabolic and Molecular Bases of Inherited Disease, 7th ed. Scriver CR, BeaudetAL, Sly WS, Valle D, eds. New York: McGraw Hill, 1995, pp. 1279–1327.Google Scholar
  21. 21.
    Rosenblatt DS, Thomas IT, Watkins D, Cooper BA, Erbe RW. Vitamin B12 responsive homocysteinuria and megaloblastic anemia: heterogeneity in methylcobalamin deficiency. Am J Med Genet 1987; 26:377–383.CrossRefGoogle Scholar
  22. 22.
    . Rees MM, Rodgers GM. Homocysteinemia: association of a metabolic disorder with vascular disease and thrombosis. Throm Res 1993; 71:337–359.Google Scholar
  23. 23.
    Kang S, Thou J, Wong PWK, Kowalisyn J, Strokosch G. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 1988; 43:414–421.Google Scholar
  24. 24.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthew RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10:111–113CrossRefGoogle Scholar
  25. 25.
    Kang S, Wong PWK, Susmano A, Sora J, Norusis M, Ruggie N. Thermolabile methylenetetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet 1991; 48:536–545.Google Scholar
  26. 26.
    Kang S, Wong PWK, Zhou J, Sora J, Lessick M, Ruggie N, et al . Thermolabile methylenetetrahydrofolate reductase in patients with coronary artery disease. Metabolism 1988; 37:611–63CrossRefGoogle Scholar
  27. 27.
    Brattstrom L, Israelsson B, Norrving B, Bergqvist D, Thome J, Hultberg B, et al. Impaired homocysteine metabolism in early-onset cerebral and peripheral occlusive arterial disease. Atherosclerosis 1990; 81:51–60.CrossRefGoogle Scholar
  28. 28.
    Selhub J, Jacques PF, Wilson PWF, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. Jama 1993; 270:2693–2698.CrossRefGoogle Scholar
  29. 29.
    Gartler SM, Homung SK, Motulsky AG. Effect of chronologic age on induction of cystathionine synthase, uroporphyrinogen I synthase, and glucose-6-phosphate dehydrogenase activities in lymphocytes. Proc Natl Acad Sci USA 1981; 78:1919–1919.CrossRefGoogle Scholar
  30. 30.
    Jacobsen DW, Gatautis VJ, Green R, Robinson K, Savon SR, Secic M, et al. Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations. Clin Chem 1994; 40: 873–881.Google Scholar
  31. 31.
    Wu LL, Wu J, Hunt SC, James BC, Vincent GM, Williams RR, et al. Plasma homocyst(e)ine as a risk factor for early familial coronary artery disease. Clin Chem 1994; 40:552–561.Google Scholar
  32. 32.
    Malinow MR, Kang S, Taylor LM, Wong PWK, Coull B, Inahara T, et al. Prevalence of hyperhomocyst(e)inemia in patients with peripheral arterial occlusive disease. Circulation 1989; 79•1180–1188Google Scholar
  33. 33.
    Boers GH, Smals AG, Trijbels FJ, Leermarkers AI, Kloppenborg PW. Unique efficiency of methionine metabolism in premenopausal women may protect against vascular disease in the reproductive years. J Clin Invest 1983; 72:1971–1976CrossRefGoogle Scholar
  34. 34.
    Boushey CJ, Beresford SAA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intake. JAMA 1995; 274• 1049–1057Google Scholar
  35. 35.
    Brattstrom LE, Israelsson B, Jeppsson J-O, Hultberg BL. Folic acid: an innocuous means to reduce plasma homocysteine. Scand J Clin Invest 1988; 48:215–221.CrossRefGoogle Scholar
  36. 36.
    Jacob RA, Wu M, Henning SM, Swendseid ME. Homocysteine increases as folate decreases in plasma of healthy men during short-term dietary folate and methyl group restriction. J Nutr 1994; 124:1072–1080.Google Scholar
  37. 37.
    Wilcken DEL, Wilcken B, Dudman NPB, Tyrrell PA. Homocystinuria: the effects of betaine in the treatment of patients not responsive to pyridoxine. New Engl J Med 1983; 309:448–453.CrossRefGoogle Scholar
  38. 38.
    Dudman NPD, Wilcken DEL, Wang J, Lynch JF, Macey D, Lundberg P. Disordered methionine/homocysteine metabolism in premature vascular disease. Arteriosclerosis Thromb 1993; 13:1253–1260.CrossRefGoogle Scholar
  39. 39.
    Ubbink JB, Vermaak WJH, van der Merwe A, Becker PJ. Vitamin B-12. vitamin B-6 and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr 1993; 57:47–53.Google Scholar
  40. 40.
    Franken DG, Boers GHJ, Blom HJ, Trijbels FJM, Kloopenborg PWC. Treatment of mild hyperhomocysteinemia in vascular disease patients. Arteriosclerosis Thromb 1994; 14:465–470.CrossRefGoogle Scholar
  41. 41.
    Ubbink JB, Vermaak WJH, van der Merwe A, Becker PJ, Delport R, Potgieter HC. Vitamin requirements for the treatment of hyperhomocysteinemia in humans. J Nutr 1994; 124:1927–1933.Google Scholar
  42. 42.
    Ubbink JB, van der Merwe A, Vermaak WJH, Delport R. Hyperhomocysteinemia and the response to vitamins supplementation. Clin Invest 1993; 71:993–998CrossRefGoogle Scholar
  43. 43.
    Davis BA, Hofler SA, Bailey LB, O’Keefe CA, Gregory JF, Cerda JJ. Homocysteine response to dietary folate modification in nonpregnant women. FASEB J 1994; 8:A248.Google Scholar
  44. 44.
    Franken DG, Boers GHJ, Blom HJ, Trijbels JMF. Effect of various regimens of vitamin B6 and folic acid on mild hyperhomocysteinemia in vascular patients. J Inher Metab 1994; 17:159–162.CrossRefGoogle Scholar
  45. 45.
    Landgren F, Israelsson B, Lindgren A, Hultberg B, Andersson A, Brattstrom L. Plasma homocysteine in acute myocardial infarction: homocysteine-lowering effect of folic acid. J Int Med 1995;237:381–388.CrossRefGoogle Scholar
  46. 46.
    Nilsson K, Gustafson L, Faldt R, Andersson A, Hultberg B. Plasma homocysteine in relation to serum cobalamin and blood folate in a psychogeriatric population. Eur J Clin Invest 1994;24:600–606.CrossRefGoogle Scholar
  47. 47.
    van den Berg M, Franken DG, Boers GHJ, Blom HJ, Jakobs C, Stehouwer CDA, et al. Combined vitamin B6 plus folic acid therapy in young patients with arteriosclerosis and hyperhomocysteinemia. J Vasc Surg 1994; 20:933–940.CrossRefGoogle Scholar
  48. 48.
    Ubbink JB, Becker PJ, Vermaak WJH, Delport R. Results of B-vitamin supplementation study used in a prediction model to define a reference range for plasma homocysteine. Clin Chem 1995;41:1033–1037.Google Scholar
  49. 49.
    O’Keefe CA, Bailey LB, Thomas EA, Hofler SA, Davis BA, Cerda JJ, et al. Controlled dietary folate affects folate status in nonpregnant women. J Nutr 1995; 125:2717–2725.Google Scholar
  50. 50.
    Stampfer MJ, Malinow MR, Willet WC, Newcomer LM, Upson B, Ullmann D, et al. A prospective study of plasma homocvst(eline and risk of myocardial infraction in US Physicians. JAMA 1992: 268:877–881CrossRefGoogle Scholar
  51. 51.
    Kang S, Wong PWK, Norusis M. Homocysteinemia due to folate deficiency. Metabolism 1987; 36:458–462CrossRefGoogle Scholar
  52. 52.
    Lewis CA, Pancharuniti N, Sauberlich HE. Plasma folate adequacy as determined by homocysteine level. Ann NYAcad Sci 1992; 699:360–362CrossRefGoogle Scholar
  53. 53.
    Stabler SP, Marcell PD, Podell ER, Allen RH, Savage DG, Lindenbaum J. Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatographymass spectrometry. J Clin Invest 1988; 81:466–474.CrossRefGoogle Scholar
  54. 54.
    Lindenbaum J, Rosenberg IH, Wilson PWF, Stabler SP, Allen RH. Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr 1994; 60:2–11.Google Scholar
  55. 55.
    Brattstrom L, Lindgren A, Israelsson B, Andersson A, Hultberg B. Homocysteine and cysteine: determinants of plasma levels in middle-aged and elderly subjects. J Intern Med 1994; 236:633–641.CrossRefGoogle Scholar
  56. 56.
    Ubbink JB, Vermaak WJH, Bennet JM, Becker PJ, van Staden DA, Bissbort S. The prevalence of homocysteinemia and hypercholesterolemia in angiographically defined coronary heart disease. Klin Wochenschr 1991; 69:527–534.CrossRefGoogle Scholar
  57. 57.
    Brattstrom L, Lindgren A, Israelsson B, Malinow MR, Norrving B, Upson B, et al. Hyperhomocysteinaemia in stroke: prevalence, cause, and relationships to type of stroke risk and stroke factors. Eur J Clin Invest 1992; 22:214–221.CrossRefGoogle Scholar
  58. 58.
    Sauberlich HE. Evaluation of folate nutrition in population groups. In: Folic Acid Metabolism in Health and Disease. Picciano MF, Stokstad ELR, Gregory JF, eds. New York: Wiley-Liss, 1990,212–235.Google Scholar
  59. 59.
    Brattstrom L, Israelsson B, Lindgarde F, Hultberg B. Higher total plasma homocysteine in vitamin B12 deficiency than in heterozygosity for homocystinuria due to cystathionine β-synthase deficiency. Metabolism 1988; 37:175–178.CrossRefGoogle Scholar
  60. 60.
    Lindenbaum J, Healton EB, Savage DG, Brust JCM, Garrrett TJ, Podell ER, et al. Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. New Engl J Med 1988; 318:1720–1728.CrossRefGoogle Scholar
  61. 61.
    Allen RH, Stabler SP, Savage DG, Lindenbaum J. Diagnosis of cobalamin deficiency I: usefulness of serum methylmalonic acid and total homocysteine concentrations. Am J Hematol 1990; 34:90–98.CrossRefGoogle Scholar
  62. 62.
    Wilcken DEL, Wilcken B. The pathogenesis of coronary artery disease: a possible role for methionine metabolism. J Clin Invest 1976; 57:1079–1082.CrossRefGoogle Scholar
  63. 63.
    Murphy-Chutorian DR, Wexman MP, Grieco AJ, Heininger JA, Glassman E, Gaull GE, et al. Methionine intolerance: a possible risk factor for coronary artery disease J Am Coll Cardiol 1985; 6:725–730.Google Scholar
  64. 64.
    Wilcken DEL, Reddy SG, Gupta VJ. Homocysteinemia, ischemic heart disease, and the carrier state for homocystinuria. Metabolism 1983; 32:363–370.CrossRefGoogle Scholar
  65. 65.
    Graham I. Interactions between homocysteinaemia and conventional risk factors in vascular disease. Eur Heart J 1994; 15:530(Abstract).Google Scholar
  66. 66.
    Israelsson B, Brattstrom LE, Hultberg BL. Homocysteine and myocardial infraction. Atherosclerosis 1988: 71:227–233.CrossRefGoogle Scholar
  67. 67.
    Malinow MR, Sexton G, Averbuch M, Grossman M, Wilson D, Upson B. Homocyst(e)inemia in daily nrartice• levels in cnronary artery disease CCnronary Artery Dis 1990; 1.215–220CrossRefGoogle Scholar
  68. 68.
    Genest JJ, McNamara JR, Salem DN, Wilson PWF, Schaefer EJ, Malinow MR. Plasma homocyst(e)ine levels in men with premature coronary artery disease. JAm Coll Cardiol 1990; 16:1114–1119.CrossRefGoogle Scholar
  69. 69.
    Pancharuniti N, Lewis CA, Sauberlich HE, Perkins LL, Go RCP, Alverez JO, et al. Plasma hornocyst(e)ine, folate and vitamin B-12 concentrations and risk for early-onset coronary artery disease. Am J Clin Nutr 1994; 59:940–948.Google Scholar
  70. 70.
    von Eckardstein A, Malinow MR, Upson B, Heinrich J, Schulte H, Schonfeld R, et al. Effects of age, lipoproteins, and hemostatic parameters on the role of homocyst(e)inemia as a cardiovascular risk factor in men. Arterioscler Thromb 1994; 14:460–464.CrossRefGoogle Scholar
  71. 71.
    Alfthan G, Pekkanen J, Jauhiainen M, Pitkaniemi J, Karvonen M, Tuomilehto J, et al. Relation of serum homocysteine and lipoprotein(a) concentrations to atherosclerotic disease in a prospective Finnish population based study. Atherosclerosis 1994; 106;9–19.CrossRefGoogle Scholar
  72. 72.
    Anesen E, Refsum H, Bonaa KH, Ueland PM, Forde OH, Nordrehaung JE. Serum total homocysteine and coronary heart disease. Int J Epid 1995; 24:704–709.CrossRefGoogle Scholar
  73. 73.
    Dalery K, Lussier-Cacan S, Selhub J, Davignon J, Latour Y, Genest J, Jr. Homocysteine and coronary heart disease in French Canadian subjects: relation with vitamins B12, B6, pyridoxal phosphate, and folate.Am J Cardiol 1995; 75: 1107–1111.CrossRefGoogle Scholar
  74. 74.
    Robinson K, Mayer EL, Miller DP, Green R, van Lente F, Gupta A et al. Hyperhomocysteinemia and low pyridoxal phosphate. Circulation 1995; 92:2825–2830.CrossRefGoogle Scholar
  75. 75.
    Kang S, Wong PWK, Cook HY, Norusis M, Messer JV. Protein-bound homocyst(e)ine-A possible risk factor for coronary artery disease. J Clin Invest 1986; 77:1482–1486.CrossRefGoogle Scholar
  76. 76.
    Friedenreich CM. Methods for pooled analyses of epidemiologic studies. Epidemiology 1993; 4:295–302.CrossRefGoogle Scholar
  77. 77.
    Daly L, Graham I. Hyperhomocysteinaemia: a powerful risk factor of vascular disease. Presented at the Annual Scientific Meeting Working Group/Epidemiology and Prevention of the European Society of Cardiology; April 25, 1994.Google Scholar
  78. 78.
    Stampfer MJ, Malinow MR. Can lowering homocysteine levels reduce cardiovascular risk? New Engl J Med 1995; 332:328–329.CrossRefGoogle Scholar
  79. 79.
    den Heijer M, Blom HJ, Gerrits WBJ, Rosendaal FR, Haak HL, Wijermans PW, et al. Is hyperhomocysteinaemia a risk factor for recurrent venous thrombosis? Lancet 1995; 345:882–885.CrossRefGoogle Scholar
  80. 80.
    Perry U, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. prospective study of serum total homocysteine concentration and risk in middle-aged British men Lancet 1995; 346:1395–1398.Google Scholar
  81. 81.
    Malinow MR, Nieto FJ, Szklo M, Chambless LE, Bond G. Carotid artery intimal-medial wall thickening in plasma homocyst(e)ine in aysmptomatic adults. Circulation 1993; 87:1107–1113.CrossRefGoogle Scholar
  82. 82.
    Selhub J, Jacques PF, Bostom AG, D’Agostino RB, Wilson PWf, BelangerAJ, et al. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. New Engl J Med 1995; 332:286–291.CrossRefGoogle Scholar
  83. 83.
    Greenland S. Quantitative methods in the review of epidemiologic literature. Epidemiol Rev 1987; 9:1–30.Google Scholar
  84. 84.
    Petitti DB, Kelsey JL, Marmot MG, Stolley PD, Vessey MP, eds. Meta-Analysis, Decision-Analysis and Cost-Effectiveness Analysis. New York: Oxford University Press, 1994; 1–246.Google Scholar
  85. 85.
    Brattstrom LE, Harbebo JE, Hultberg BL. Moderate Homocysteinemia: a possible risk factor for arteriosclerotic cerebrovascular disease. Stroke 1984; 15:1012–1016.CrossRefGoogle Scholar
  86. 86.
    Araki A, Sako Y, Fukushima Y, Matsumoto M, Asada T, Kita T. Plasma sullhydryl-containing amino acids in patients with cerebral infarction and in hypertensive subiects. Atherosclerosis 1989; 79:139–146.CrossRefGoogle Scholar
  87. 87.
    Coull BM, Malinow MR, Beamner N, Sexton G, Nordt F, de Garmo P. Elevated plasma homocyst(e)ine concentration as a possible independent risk factor for stroke. Stroke 1990; 21:572–576.CrossRefGoogle Scholar
  88. 88.
    Verhoef P, Hennekens CH, Malinow MR, Kok FJ, Willett WC, Stampfer MJ. A prospective study of plasma homocyst(e)ine and risk of ischemic stroke. Stroke 1994; 25:1924–1930.CrossRefGoogle Scholar
  89. 89.
    Clarke R, Fitzgerald D, O’Brien C, Roche C, Parker RA, Graham I. Hyperhomocysteinaemia: a risk factor for extracranial carotid artery atherosclerosis. Ir J Med Sci 1992; 161:61–65.CrossRefGoogle Scholar
  90. 90.
    Rubba P, Faccenda F, Pauciullo P, Carbone L, Mancini M, Strisciuglio P, et al. Early signs of vascular disease homocystinuria: A noninvasive study by ultrasound in eight families with cystathionine-β-synthase deficiency. Metabolism 1990; 39:1191–1195.CrossRefGoogle Scholar
  91. 91.
    Mansoor MA, Bergmark C, Svardal AM, Lonning PE. Redox status and protein binding of plasma homocysteine and other aminothiols in patients with early-onset peripheral vascular disease: homocysteine and peripheral vascular disease. Arterioscler Throm Biol 1995; 15:232–240.CrossRefGoogle Scholar
  92. 92.
    Taylor LM, DeFrang RD, Harris EJ, Porter JM. The association of elevated plasma homocyst(e)ine with progression of symptomatic peripheral arterial disease. J Vasc Surg 1991; 13:128–136.CrossRefGoogle Scholar
  93. 93.
    Molgaard J, Malinow MR, Lassvik C, Holm A-C, Upson B, Olsson AG. Hyperhomocyst(e)inaemia: an independent risk factor for intermittent claudication. J Intern Med 1992; 231:273–279.CrossRefGoogle Scholar
  94. 94.
    Bergmark C, Manssor MA, Swedenborg J, de Faire U, Svardal AM, Ueland PM. Hyperhomocysteinemia in patients operated for lower extremity ischeamia below the age of 50-effect of smoking and extent of disease. Eur J Vasc Surg 1993; 7:391–396.CrossRefGoogle Scholar
  95. 95.
    Giles WH, Kittner SJ, Anda RF, Croft JB, Casper ML. Serum folate and risk for ischemic stroke. Stroke 1995; 26:1166–1170.CrossRefGoogle Scholar
  96. 96.
    Dudman NPB, Hicks C, Wang J, Wilcken DEL. Human arterial endothelial cell detachment in vitro: its promotion by homocysteine and cysteine. Atherosclerosis 1991; 91:77–83.CrossRefGoogle Scholar
  97. 97.
    Wall RT, Harlan JM, Harker LA, Striker GE. Homocysteine-induced endothelial cell injury in vitro: a model for the study of vascular injury. Throm Res 1980; 18:113–121.CrossRefGoogle Scholar
  98. 98.
    Blann AD. Endothelial cell damage and homocysteine. Atherosclerosis 1994; 94:89–91.CrossRefGoogle Scholar
  99. 99.
    Harker LA, Slichter SJ, Scott CR, Ross R. Homocysteinemia. Vascular injury and arterial thrombosis. New Engl J Med 1974; 291:537–543.CrossRefGoogle Scholar
  100. 100.
    Harker LA, Ross R, Slichter SJ, Scott CR. Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest 1976; 58:731–741.CrossRefGoogle Scholar
  101. 101.
    Tsai J, Perrella MA, Yoshizumi M, Hsieh C, Haber E, Schlegel R, et al. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci USA 1994; 91:6369–6373.CrossRefGoogle Scholar
  102. 102.
    Heinecke JW, Rosen H, Chait A. Iron and copper promote modification of low density lipoprotein by human arterial cmnnth muccle cells in culture J Clin Tnvest 1984. 74. 1 R900–1 R94Google Scholar
  103. Lentz SR, Sadler JE. Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine. J Clin Invest 1991; 88:1906–1914.CrossRefGoogle Scholar
  104. 104.
    Hennekens CH, Buring JE. Epidemiology in Medicine. Boston: Little, Brown and Company, 1987.Google Scholar
  105. 105.
    U.S. Bureau of the Census. Statistical Abstract of the United States: 1993, 113th edition, Washington, DC, 1993.Google Scholar
  106. 106.
    Sauberlich HE, Kretsch MJ, Skala JH, Johnson HL, Taylor PC. Folate requirement and metabolism in nonpregnant women. Am J Clin Nutr 1987; 46:1016–1028.Google Scholar
  107. 107.
    Bender MM, Levy AS, Schucker RE, Yetley EA. Trends in prevalence and magnitude of vitamin and mineral supplement usage and correlation with health status. J Am Diet Assoc 1992; 92:1096–1101.Google Scholar
  108. 108.
    Nightingale SI. From the Food and Drug Administration: proposals for folic acid fortification and labelling of certain foods to reduce the risk of neural tube defects. JAMA 1993; 270:2283.Google Scholar
  109. 109.
    Federal Register. October 14, 1993; 58:53,254–53,297, 55,305–53,317.Google Scholar
  110. 110.
    Savage DG, Lindenbaum J. Folate-cobalamin interactions. In: Folate in Health Disease. Bailey LB, ed. New York: Marcel Dekker, Inc. 1995, 237–285.Google Scholar
  111. 111.
    Schafer LW, Larson DE, Melton LT, Higgins JA, Zinsmeister AR. Risk of development of gastric carcinoma in patients with pernicious anemia: a population-based study in Rochester, Minnesota. Mayo Clin Proc 1985; 60:444448.Google Scholar
  112. 112.
    Linder MC. Nutrition and metabolism of vitamins. In: Nutritional Biochemistry and Metabolism with Clinical Applications. Linder MC, ed. New York: Elsevier, 1985,69–131.Google Scholar
  113. 113.
    Centers for Disease Control. Recommendations for the use of folic acid to reduce the number of cases of snina hifidla andl other neural defects. MMWR 1992. 41:1–7.Google Scholar
  114. 114.
    Mills JL, McPartlin JM, Kirke PN, Lee YJ, Conley MR, Weir DG, at el. Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 1995; 345:149–151.CrossRefGoogle Scholar
  115. 115.
    Stevenson RE, Dean JH, Allen WP, Kelly M. Prevention program for reducing risk for neural tube defects-South Carolina, 1992–1994. Morbid Mortal Wkly Rpt. 1995; 44:141,142.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Shirley A. A. Beresford
  • Carol J. Boushey

There are no affiliations available

Personalised recommendations