Morphology and Mechanical Behavior of Interpenetrating Polymer Networks

  • L. H. Sperling
  • Volker Huelck
  • D. A. Thomas


The synthesis and morphology of IPN’s are compared to the several other methods of preparing blends of distinguishable polymer pairs. Both components of IPN’s are continuous throughout, the very finely divided phase domain dimensions being controlled by the crosslink density.

When the elastic phase predominates, the IPN’s behave as reinforced elastomers. As the glassy component is increased, the material becomes an impact resistant plastic. At midrange compositions between the two glass transition temperatures, materials exhibiting leathery behavior are obtained.

As the compatibility of the two IPN components is increased, the glass transition behavior changes from two distinct transitions to one broad transition in a systematic manner. It is concluded that a broadened transition can result, even in thermodynamically compatible mixes, if the minimum volume required for independent contribution to the relaxation spectrum is subject to wide composition variation.


Block Copolymer Methyl Methacrylate Interpenetrate Polymer Network Ethyl Acrylate Plastic Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    K. Kato, Japan Plastics, 2, 6 (April, 1968 ).Google Scholar
  2. (2).
    M. Matsuo, Japan Plastics, 2, 6 (July, 1968 ).Google Scholar
  3. (3).
    G. Holden, E. T. Bishop, and N. R. Legge, J. Polym. Sci., 26C, 37 (1969).Google Scholar
  4. (4).
    D. J. Meier, J. Polym. Sci., 26C, 81 (1969).Google Scholar
  5. (5).
    L. H. Sperling and D. W. Friedman, J. Polym. Sci., A-2, 7, 425 (1969).CrossRefGoogle Scholar
  6. (6).
    L. H. Sperling, D. W. Taylor, M. L. Kirkpatrick, H. F. George, and D. R. Bardman, J. Appl. Polym. Sci., 14, 73 (1970).CrossRefGoogle Scholar
  7. (7).
    L. H. Sperling, H. F. George, V. Huelck, and D. A. Thomas, Accepted, J. Appl. Polym. Sci.Google Scholar
  8. (8).
    J. R. Millar, J. Chem. Soc., 1311 (1960).Google Scholar
  9. (9).
    G. Gamow, “One, Two, Three…Infinity” Bantam, 6th Edition, 1967, p. 56.Google Scholar
  10. (10).
    H. L. Frisch, D, K.empner, and K. C. Frisch, J. Polym. Sci., B 7, 775 (1969).Google Scholar
  11. (11).
    D. Klempner, H. L. Frisch, and K. C. Frisch, J. Polym, Sci., A-2, 8, 921 (1970).CrossRefGoogle Scholar
  12. (12).
    H. L. Frisch, and D. Klempner, This Book.Google Scholar
  13. (13).
    L. H. Sperling and Robert Arnts, to be published.Google Scholar
  14. (14).
    R. L.Scott, J. Chem. Phys., 17, 279 (1949); note especially the section titled-“The Two Polymer System”.Google Scholar
  15. (15).
    L. Bohn, Rubber Chem. Tech., 41, 495 (1968); Koll.-Z. u. Z. fir Polymere, T3 55 (1966).CrossRefGoogle Scholar
  16. (16).
    J. Stoelting, F. E. Karasz, and W. J. MacKnight, Poly. Eng. & Sci., 10, 133 (1970).CrossRefGoogle Scholar
  17. (17).
    M. Matsuo, C. Nozaki, and Y. Jyo, Polym. Eng. & Sci., 9, 197 (1969).CrossRefGoogle Scholar
  18. (18).
    K. Kato, J. Polym. Sci., B, 4, 35 (1966).Google Scholar
  19. (19).
    H. Keskkula and P. A. Traylor, J. Appl. Polym. Sci., 11, 2361 (1967).CrossRefGoogle Scholar
  20. (20).
    E. Molau and H. Keskkula, J. Polym. Sci., A-1, 1595 (1966).Google Scholar
  21. (21).
    G. Kraus, K. W. Rollmann, and J. T. Gruver, Macrorol., 3, 92 (1970).CrossRefGoogle Scholar
  22. (22).
    M. Morton, J. C. Healy, and R. L. Dencour, Proc. Int. Rubber Conf., 1967, Gordon and Breach, 1969. p. 175.Google Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • L. H. Sperling
    • 1
  • Volker Huelck
    • 1
  • D. A. Thomas
    • 1
  1. 1.Materials Research CenterLehigh UniversityBethlehemUSA

Personalised recommendations