Skip to main content

Molecular Bond Rupture Associated with Inelastic Deformation of Elastomers

  • Chapter

Summary

Unstrained rubbers cooled far below their glass transition temperature are generally very brittle. The ductility can, however, be greatly increased by prestraining (~100%) the rubber before reducing the temperature as suggested by Andrews and Reed. Results on natural rubber and Hycar 1043 rubber are reported, showing the effects of prestrain, temperature and strain rate on low temperature ductility and primary molecular bond rupture. Molecular bond rupture was measured by electron paramagnetic resonance (EPR) techniques. X-ray diffraction in rubbers indicates that prestraining and cooling results in orientated crystallization. It is suggested that this, in effect, produces a semi-crystalline polymer with a resulting increase in ductility and rather general bond rupture (throughout the loaded sample volume) during deformation leading to fracture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Andrews and P. E. Reed, Polymer Letters 5, 317 (1967).

    Article  CAS  Google Scholar 

  2. Personal Communication.

    Google Scholar 

  3. D. K. Roylance, K. L. DeVries and M. L. Williams, Fracture 1969 Chapman & Hall, London, 1969, p. 551.

    Google Scholar 

  4. R. R. Despain, K. L. DeVries, R. D. Luntz and M. L. Williams, “Microscopic Degradation in Teeth,” To be published in J. Dental Res. (1970).

    Google Scholar 

  5. K. L. DeVries, E. R. Simonson and M. L. Williams, J. Basic Engr. 91, 587 (1969).

    Google Scholar 

  6. S. N. Zhurkov, Int. J. Frac. Mech. 1, 311 (1965).

    Google Scholar 

  7. S. N. Zhurkov, A. Y. Savostin, E. E. Tomashevskii, Dokl. Akad. Navk. SSSR 195, 707 (1969).

    Google Scholar 

  8. D. Campbell and A. Peterlin, J. Poly. Sci. B 6, 481 (1968).

    Google Scholar 

  9. H. H. Kausch and J. Becht, Rheologica Acta 9, 137 (1970).

    Google Scholar 

  10. M. Baird and J. Bersohn, Electron Paramagnetic Resonance W. A. Benjamin, Inc., New York (1966).

    Google Scholar 

  11. K. L. DeVries, D. K. Roylance and M. L. Williams, J. Poly. Sci. A-1, 8, 237 (1970).

    Google Scholar 

  12. F. A. McClintock and A. S. Argon, Mech. Behavior of Matls. Addison-Wesley, Inc., Reading, Mass. (1966).

    Google Scholar 

  13. L. R. G. Treloar, The Physics of Rubber Elasticity Oxford Press (1958).

    Google Scholar 

  14. R. Dickie and T. Smith, J. Poly. Sci. 7, 635 (1969).

    Google Scholar 

  15. E. M. Bartenev and Y. S. Zuyev, Strength and Failure of Viscoelastic Materials Pergamon Press, New York (1969).

    Google Scholar 

  16. A. F. Joffe, Zhrfkho Chast’fizicheskay 56, No. 5–6, 489 (1924).

    Google Scholar 

  17. R. F. Boyer and R. S. Spencer, Advances in Colloid Science II Interscience Inc., New York (1946).

    Google Scholar 

  18. R. E. Morris, R. R. James and T. A. Werkenthin, Ind. Eng. Chem. 35, 864 (1943).

    Google Scholar 

  19. A. M. Borders and R. D. June, Ind. Eng. Chem. 38, 1066 (1949).

    Google Scholar 

  20. J. M. Goppel, Appt. Sci. Res. Al, 3 (1949).

    Google Scholar 

  21. L. A. Wood, Advances in Colloid Science II, Interscience Inc., New York (1946).

    Google Scholar 

  22. E. H. Andrews and A. N. Gent, The Chemistry and Physics of Rubber-Like Substances Garden City Press, Ltd., Letchworth, England 225 (1963).

    Google Scholar 

  23. L. E. Alexander, X-Ray Diffraction Methods in Polymer Science Wiley & Sons, Inc., New York (1969).

    Google Scholar 

  24. M. Mooney and W. E. Wolstenholme, Ind. Eng. Chem. 44, 59 (1953).

    Google Scholar 

  25. G. E. King, Ind. Eng. Chem. 35, 9 (1943).

    Google Scholar 

  26. E. E. Beu, W. B. Reynolds, C. F. Fryling and H. L. McMurray, J. Poly. Sci. 3, 465 (1948).

    Google Scholar 

  27. J. Becht, K. L. DeVries and H. H. Kausch, “On Some Aspects of Strength of Fibers,” To be published in the European J. Poly. Sci. (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, R., DeVries, K.L., Williams, M.L. (1971). Molecular Bond Rupture Associated with Inelastic Deformation of Elastomers. In: Chompff, A.J., Newman, S. (eds) Polymer Networks. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6210-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6210-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6212-9

  • Online ISBN: 978-1-4757-6210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics