Birefringence Analysis of Inhomogeneous Swelling in Filled Elastomers

  • T. Kotani
  • S. S. Sternstein


The inhomogeneous swelling of an elastomeric matrix containing isolated, spherical filler particles has been described in detail elsewhere [7]. In this paper, the birefringence resulting from the spherically symmetric swelling field is considered in detail. Equations are derived that predict the retardation of polarized light that would be observed in a plane. Experimental results on cross-linked natural rubber containing bonded glass spheres and swollen in benzene and o-dichlorobenzene are given.

Observations on the interfacial retardation, decay of retardation with distance from the filler, effect of filler size, and the dependence on Flory-Huggins χ parameter are in quantitative agreement with the theory. Additional data on the effect of crosslink density indicate that cohesive failure of elastomer at low cross-linking and non-Gaussian network statistics and/or failure at high crosslinking must be taken into consideration.


Natural Rubber Crosslink Density Rigid Inclusion Cohesive Failure Infinite Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Fujimoto, Kogyozairyo 16, No. 8, 35 (1969).Google Scholar
  2. 2.
    G. Kraus, Rubber Chem. Technol. 38, 1070 (1965).CrossRefGoogle Scholar
  3. 3.
    G. Kraus, Rubber Chem. Technol 37, 6 (1964)CrossRefGoogle Scholar
  4. G. Kraus, J. Appl. Polymer Sci. 7, 861 (1963).CrossRefGoogle Scholar
  5. 4.
    W. R. Krigbaum, R. J. Roe, Rubber Chem. Technol. 38, 1039 (1965).CrossRefGoogle Scholar
  6. 5.
    J. Scanlan, Rev. Gen. Caoutch. 41, 514 (1964).Google Scholar
  7. 6.
    Z. Rigbi, Technion (Israel Institute of Technology) Reports TDM 69–11 (Nov. 1969); TDM 70–3 (March 1970); see also paper by Rigbi, this symposium.Google Scholar
  8. 7.
    S. S. Sternstein, J. Macromolecular Sci., Pt. B, Physics, In Press.Google Scholar
  9. 8.
    W. Kuhn, F. Grün, Kolloid Z, 101, 248 (1942).CrossRefGoogle Scholar
  10. 9.
    J. J. Hermans, Kolloid Z, 103, 210 (1943).CrossRefGoogle Scholar
  11. 10.
    L. R. G. Treloar, The Physics of Rubber Elasticity, 2nd Ed., Oxford. 1958.Google Scholar
  12. 11.
    R. S. Stein, A. V. Tobolsky, Textile Research J. 18, 201, 302 (1948).CrossRefGoogle Scholar
  13. 12.
    J. Furukawa, S. Yamashita, T. Kotani, T. Kawashima, J. Appl. Polymer Sci. 13, 2527 (1969).CrossRefGoogle Scholar
  14. 13.
    R. S. Stein, University of Massachusetts, Private communication.Google Scholar
  15. 14.
    P. J. Flory, J. Chem. Phys. 18, 108 (1950).CrossRefGoogle Scholar
  16. 15.
    P. J. Flory, J. Rehner, J. Chem. Phys. 4, 521 (1943).CrossRefGoogle Scholar
  17. 16.
    C. Picot, M. Fukuda, C. Chou, and R. S. Stein, J. Macromolecular Sci. Pt. B., Physics, In Press; see also article in this symposiumGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • T. Kotani
    • 1
  • S. S. Sternstein
    • 1
  1. 1.Materials DivisionRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations