Advertisement

Mechanisms and Function of Call-Timing in Male-Male Interactions in Frogs

  • Georg M. Klump
  • H. Carl Gerhardt
Chapter
Part of the NATO ASI Series book series (NSSA, volume 228)

Abstract

In many species of frogs females choose between males on the basis of their advertisement calling (e.g. see reviews by Wells 1977, 1988). Acoustic signals are also important in the context of territorial male-male interactions (e.g. see reviews by Wells 1977, 1988). For maximising the number of intended receivers, calling males have evolved signals that have a very high sound pressure level (SPL) in the range of 90 to 120dB SPL (measured at 0.5m distance; see Loftus-Hills and Littlejohn 1971; Gerhardt 1975; Passmore 1981; Narins and Hurley 1982). In all species of anurans studied, acoustic advertisement was found to be the most energetically expensive behaviour observed (e.g. Taigen and Wells 1984; Prestwich et al. 1989). Thus, strategies that improve a frog’s ability to transmit acoustic signals more efficiently are likely to be selectively advantageous.

Keywords

Refractory Period Female Choice Advertisement Call Call Timing Playback Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awbrey, F.T. 1978. Social interaction among chorusing pacific tree frogs, Hyla regilla. Copeia, 1978, 208–214.CrossRefGoogle Scholar
  2. Backwell, P.R.Y. and Passmore, N.I. 1991. Sonic complexity and mate localization in the leaf-folding frog, Afrixalus delicatus. Herpetologica, 47, 226–229.Google Scholar
  3. Batschelet, E. 1981. Circular Statistics in Biology. Academic Press; London.Google Scholar
  4. Brush, J.S. and Narins, P.M. 1989. Chorus dynamics of a neotropical amphibian assemblage: comparison of computer simulation and natural behavior. Anim. Behay., 37, 33–44.CrossRefGoogle Scholar
  5. Bucher, T.L., Ryan, M.J. and Bartolomew, G.A. 1982. Oxygen consumption during resting, calling and nest building in the frog Physalaemus pustulosus. Physiol. Zool., 55, 10–22.Google Scholar
  6. Busnel, R.-G. and Dumortier, B. 1955. Phonoreactions de male d’ Hyla arborea a des signaux acoustiques artificiels. Bull. Soc. Zool. France, 80, 66–69.Google Scholar
  7. Duellman, W.E. 1967. Social organization in the mating calls of some neotropical anurans. Am. Midl. Nat., 77, 156–163.CrossRefGoogle Scholar
  8. Dyson, M.L. and Passmore, N.I. 1988a. Two-choice phonotaxis in Hyperolius marmoratus (Mura: Hyperolidae): the effect of temporal variation on presented stimuli. Anim. Behay., 36, 648–652.CrossRefGoogle Scholar
  9. Dyson, M.L. and Passmore, N.I. 1988b. The combined effects of intensity and the temporal relationship of stimuli on phonotaxis in female painted reedfrogs Hyperolius marmoratus. Anim. Behay., 63, 1555–1556.CrossRefGoogle Scholar
  10. Forester, D.C. and Harrison, W.K. 1987. The significance of antiphonal vocalization by the spring peeper, Pseudacris crucifer (Amphibia, Mura). Behaviour, 103, 1–15.CrossRefGoogle Scholar
  11. Foster, W.A. 1967. Chorus structure and vocal response in the pacific treefrog, Hyla regilla. Herpetologica, 23, 100–104.Google Scholar
  12. Fox, J.H. and Wilczynski, W, 1986. The augmentation of per-capita active space through chorussing in anurans: a computer model. Soc. Neurosci. Abstr., 12, 314.Google Scholar
  13. Gerhardt, H.C. 1974. The significance of some spectral features in mating call recognition in the green treefrog (Hyla cinerea). J. Exp. Biol., 61, 229–241.PubMedGoogle Scholar
  14. Gerhardt, H.C. 1975. Sound-pressure levels and radiation patterns of the vocalizations of some North American frogs and toads. J. Comp. Physiol., 102, 1–12.CrossRefGoogle Scholar
  15. Gerhardt, H.C. 1978. Temperature coupling in the vocal communication system of the gray treefrog Hyla versicolor. Science, 199, 992–994.Google Scholar
  16. Gerhardt, H.C. 1988. Acoustic properties used in call recognition by frogs and toads. In: The Evolution of the Amphibian Auditory System. (Ed. by B. Fritsch, M.J. Ryan, W. Wilczynski, T.E. Hetherington & W. Walkowiak W ), pp. 455–483. Wiley, New York.Google Scholar
  17. Gerhardt, H.C. and Doherty, J.A. 1988. Acoustic communication in the gray treefrog, Hyla versicolor: evolutionary and neurobiological implications. J. Comp. Physiol. A, 162, 261–278.CrossRefGoogle Scholar
  18. Gerhardt, H.C. and Klump, G.M. 1988a. Masking of acoustic signals by the chorus background noise in the green treefrog: A limitation on mate choice. Anirn. Behay., 36, 1247–1249.CrossRefGoogle Scholar
  19. Gerhardt, H.C. and Klump, G.M. 19886. Phonotactic responses and selectivity of barking treefrogs (Hyla gratiosa) to chorus sounds. J. Comp. Physiol. A, 163, 795–802.Google Scholar
  20. Goin, C.J. 1949. The peep order of peepers: a swamp water serenade. Quart. J. Fla. Acad. Sci., 11, 59–61.Google Scholar
  21. Hardy, D.F. 1959. Chorus structure in the striped chorus frog, Pseudacris nigrita. Herpetologica, 15, 14–16.Google Scholar
  22. Ibanez, R. 1991. Synchronized calling in Smilisca sila and Centrolenella granulosa. unpublished Ph.D. Dissertation, University of Connecticut.Google Scholar
  23. Lemon, R.E. 1971. Vocal communication by the frog Eleutherodactylus martiniensis. Can. J. Zool., 49, 211–217CrossRefGoogle Scholar
  24. Lemon, R.E. and Struger, J. 1980. Acoustic entrainment to randomly generated calls by the frog, Hyla crucifer. J. Acoust. Soc. Am., 67, 2090–2095.CrossRefGoogle Scholar
  25. Loftus-Hills, J.J. 1974. Analysis of an Acoustic pacemaker in Strecker’s chorus frog, Pseudacris streckeri (Mura: Hylidae). J. Comp. Physiol., 90, 75–87.CrossRefGoogle Scholar
  26. Loftus-Hills, J.J. and Littlejohn, M.J. 1971. Mating call sound intensities of anuran amphibians. J. Acoust. Soc. Am., 49, 1327–1329.CrossRefGoogle Scholar
  27. Lörcher, K. 1969. Vergleichende bioakustische Untersuchungen an der Rot-und Gelbbauchunke Bombina bombina (L.) und Bombina variegata (L.). Oecologia, 3, 84–124.CrossRefGoogle Scholar
  28. Moore, S.W., Lewis, E.R., Narins, P.M. and Lopez, P.T. 1989. The call-timing algorithm of the white-lipped frog, Leptodactylus albilabris. J. Comp. Physiol. A, 164, 309–319.CrossRefGoogle Scholar
  29. Narins. P.M. 1982. Behavioral refractory period in neotropical treefrogs. J. Comp. Physiol., 148, 337–344.CrossRefGoogle Scholar
  30. Narins. P.M. and Capranica, R.R. 1978. Communicative significance of the two-note call of the treefrog Eleutherodactylus coqui. J. Comp. Physiol., 127, 1–9.CrossRefGoogle Scholar
  31. Narins. P.M. and Hurley, D.D. 1982. The relationship between call intensity and function in the Puerto Rican coqui (Mura, Leptodactylidae). Herpetologica, 38, 287–295.Google Scholar
  32. Narins. P.M. and Zelick, R. 1988. The effects of noise on auditory processing and behavior in amphibians. In: The Evolution of the Amphibian Auditory System. (Ed. by B. Fritsch, M.J. Ryan, W. Wilczynski, T.E. Hetherington & W. Walkowiak W ), pp. 511–536. Wiley, New York.Google Scholar
  33. Oldham, R.S. and Gerhardt, H.C. 1975. Behavioral isolation of the treefrogs Hyla cinerea and Hyla gratiosa. Copeia, 1975, 223–231.CrossRefGoogle Scholar
  34. Passmore, N.I. 1981. Sound levels of mating calls of some african frogs. Herpetologica, 37, 166–171.Google Scholar
  35. Passmore, N.I. and Telford, S.R. 1981. The effect of chorus organization on mate localization in the painted reedfrog (Hyperolius marmoratus). Behay. Ecol. Sociobiol., 9, 291–293.CrossRefGoogle Scholar
  36. Perkel, D.H., Gerstein, G.L. and Moore, G.P. 1967. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophysical Journal, 7, 419–440.PubMedCrossRefGoogle Scholar
  37. Popp, J.W. 1989. Methods for measuring avoidance of acoustic interference. Anim. Behay., 38, 358–359.CrossRefGoogle Scholar
  38. Prestwich, K.N., Brugger, K.E. and Topping, M. 1989. Energy and communication in three species of hylid frogs: power input, power output and efficiency. J. Exp. Biol., 143, 53–80.Google Scholar
  39. Rosen, M. and Lemon, R.E. 1974. The vocal behavior of spring peepers, Hyla crucifer. Copeia, 1974, 940–950.CrossRefGoogle Scholar
  40. Schneider, H. 1967. Rufe and Rufverhalten des Laubfrosches Hyla arborea arborea (L.). Z. vergl. Physiol., 57, 174–189.CrossRefGoogle Scholar
  41. Schneider, H., Joermann, G. and Hôdl, W. 1988. Calling and antiphonal calling in four neotropical anuran species of the family Leptodactylidae. Zool. Jb. Physiol., 92, 77–103.Google Scholar
  42. Schwartz, J.J. 1987a. Spectral and temporal properties in species and call recognition in a neotropical treefrog with a complex vocal repertoire. Anim. Behay., 35, 340–347.CrossRefGoogle Scholar
  43. Schwartz, J.J. 1987b. The function of call alternation in anuran amphibians: A test of three hypotheses. Evolution, 41, 461–471.CrossRefGoogle Scholar
  44. Schwartz, J.J. 1991. Why stop calling? A study of unison bout singing in a neotropical treefrog. Anim. Behay., in press.Google Scholar
  45. Schwartz, J.J. and Gerhardt, H.C. 1989. Spatially mediated release from auditory masking in an anuran amphibian. J. Comp. Physiol. A, 166, 37–41.CrossRefGoogle Scholar
  46. Schwartz, J.J. and Rand, A.S. 1991. The consequences of communication of call overlap in the tungara frog, a neotropical anuran with a frequency-modulated call. Ethology, in press.Google Scholar
  47. Schwartz, J.J. and Wells, K.D. 1985. Intra and interspecific vocal behavior of the neotropical treefrog Hyla microcephala. Copeia, 1985, 27–38.CrossRefGoogle Scholar
  48. Sokal, R.R. and Rohlf, F.J. 1969. Biometry. Freeman, San Francisco.Google Scholar
  49. Taigen, T.L. and Wells, K.D. 1984. Energetics of vocalization by an anuran amphibian (Hyla versicolor). J. Comp. Physiol. B, 155, 163–170.CrossRefGoogle Scholar
  50. Tuttle, M.D. and Ryan, M.J. 1982. The role of synchronized calling, ambient light, and ambient noise in anti-bat-predator behavior of a treefrog. Behay. Ecol. Sociobiol., 11, 125–131.CrossRefGoogle Scholar
  51. Wells, K.D. 1977. The social behavior of anuran amphibians. Anim. Behay., 25, 666–693.CrossRefGoogle Scholar
  52. Wells, K.D. 1988. The effects of social interactions on anuran vocal behavior. In: The Evolution of the Amphibian Auditory System. (Ed. by B. Fritsch, M.J. Ryan, W. Wilczynski, T.E. Hetherington & W. Walkowiak W ), pp. 433–454. Wiley, New York.Google Scholar
  53. Wells, K.D. and Schwartz, J.J. 1984. Vocal communication in a neotropical treefrog, Hyla ebraccata: Advertisement calls. Anim. Behay., 32, 405–420.CrossRefGoogle Scholar
  54. Whitney, C.L. and Krebs, J.R. 1975. Mate selection in pacific treefrogs. Nature 255, 325–326.CrossRefGoogle Scholar
  55. Wickler, W. 1974. Über die Beeinflussung des Partners im Duettgesang der Schmätzerdrossel Cossypha heuglini Hartlaub (Ayes, Turdidae). Z. T ierpsychol., 36, 128–136.CrossRefGoogle Scholar
  56. Wickler, W. and Seibt, U. 1974. Rufen and Antworten bei Kassina senegalensis, Bufo regularis and anderen Anuren. Z. Tierpsychol., 34, 524–537.Google Scholar
  57. Zelick, R. and Narins, P.M. 1982. Analysis of acoustically evoked call suppression behavior in a neotropical treefrog. Anim. Behay., 30, 728–733.CrossRefGoogle Scholar
  58. Zelick, R. and Narins, P.M. 1983. Intensity discrimination and the precision of call timing in two species of neotropical treefrogs. J. Comp. Physiol., 153, 403–412.CrossRefGoogle Scholar
  59. Zelick, R. and Narins, P.M. 1985. Characterization of the advertisement call oscillator in the frog Eleutherodactylus coqui. J. Comp. Physiol. A, 156, 223–229.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Georg M. Klump
    • 1
  • H. Carl Gerhardt
    • 2
  1. 1.Institut für ZoologieTechnische Universität MünchenGarchingGermany
  2. 2.Division of Biological SciencesUniversity of MissouriColumbiaUSA

Personalised recommendations