Skip to main content

Optical Pulse Compression Based on Enhanced Frequency Chirping

  • Chapter
Physics of New Laser Sources

Part of the book series: NATO ASI Series ((NSSB))

Abstract

Through numerical simulations, we show that, under relatively general conditions, passage of an intense picosecond pulse through a single-mode optical fiber can cause the pulse to become strongly frequency broadened with a positive chirp (linear frequency sweep) describing essentially all of the energy of the output pulse. Also, because the optical fiber supports only a single transverse mode, the entire output beam profile has the same frequency modulation. These two features allow for unprecedented optical pulse compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, Bell.Syst.Tech.J., 39: 745 (1960).

    Article  Google Scholar 

  2. E. B. Treacy, Phys.Lett., 28A: 34 (1968).

    Article  Google Scholar 

  3. R. A. Fisher, P. L. Kelley, and T. K. Gustafson, Appl.Phys.Lett., 14: 140 (1969).

    Article  Google Scholar 

  4. A. Laubereau, Phys.Lett., 29A: 539 (1969).

    Article  Google Scholar 

  5. D. Grischkowsky, Appl.Phys.Lett., 25: 566 (1974).

    Article  Google Scholar 

  6. R. A. Fisher and W. K. Bischel, J.Appl.Phys., 46: 4921 (1975).

    Article  Google Scholar 

  7. R. H. Lehmberg and J. M. McMahon, Appl.Phys.Lett., 28:204 (1976); R. H. Lehmberg, J. R.intjes, and R. C. Eckardt, Opt.Commun., 22: 95 (1977).

    Google Scholar 

  8. J. K. Wigmore and D. Grischkowsky, IEEE J.Quantum Electron QE-14:310 (1978). This paper contains an extensive listing of the pulse compression literature.

    Google Scholar 

  9. A. Hasegawa and F. Tappert, Appl.Phys.Lett., 23: 142 (1973).

    Article  Google Scholar 

  10. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys.Rev.Lett., 45: 1095 (1980).

    Article  Google Scholar 

  11. H. Nakatsuka, D. Grischkowsky, and A. C. Balant, Phys.Rev.Lett., 47: 910 (1981).

    Article  Google Scholar 

  12. D. Marcuse, Appl.Opt., 19: 1653 (1980).

    Article  Google Scholar 

  13. R. H. Stolen and C. Lin, Phys.Rev., A17: 1448 (1978).

    Article  Google Scholar 

  14. For a Gaussian pulse our Z ti Zshock/3 of Reference 6.

    Google Scholar 

  15. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, Appl.Phys.Lett., 40: 761 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grischkowsky, D., Balant, A.C. (1982). Optical Pulse Compression Based on Enhanced Frequency Chirping. In: Abraham, N.B., Arecchi, F.T., Mooradian, A., Sona, A. (eds) Physics of New Laser Sources. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6187-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6187-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6189-4

  • Online ISBN: 978-1-4757-6187-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics