Advertisement

Temporal Compression of Light

  • John K. Wigmore
  • Daniel R. Grischkowsky
Part of the NATO ASI Series book series (NSSB)

Abstract

The 5890 Å output from a CW dye laser was converted into a train of 0.5 ns pulses by frequency modulation and passage through a near-resonant atomic vapor delay line of Na. The theory of the process is discussed in both the time and frequency domains. Using a modulation index of 120 at a frequency of 17.8 MHz, we obtained values for the temporal compression ratio and intensity enhancement of 112 and 14, easily the largest that have been reported.

Keywords

Compression Ratio Delay Line Instantaneous Frequency Modulation Index Pulse Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, The theory and design of chirp radars, Bell.Syst.Tech.J., 39: 745–808 (1960).CrossRefGoogle Scholar
  2. 2.
    F. Gires and P. Tournois, Interférométre utilisable pour la compression d’impulsions lumineuses moduleés en frequence, Compt.Rend.Acad.Sci.(Paris), 258: 6112–6115 (1964).Google Scholar
  3. 3.
    J. A. Giordmaine, M. A. Duguay, and J. W. Hansen, Compression of optical pulses, IEEE J.Quantum Electron, QE-4: 252–255 (1968).Google Scholar
  4. 4.
    E. B. Treacy, Compression of picosecond light pulses, Phys.Lett., 28A: 34–35 (1968).CrossRefGoogle Scholar
  5. 5.
    M. A. Duguay and J. W. Hansen, Compression of pulses from a mode-locked He-Ne laser, Appl.Phys.Lett., 14: 14–15 (1969).CrossRefGoogle Scholar
  6. 6.
    R. A. Fisher, P. L. Kelley, and T. K. Gustafson, Subpicosecond pulse generation using the optical Kerr effect, Appl.Phys.Lett., 14: 140–143 (1969).CrossRefGoogle Scholar
  7. 7.
    A. Laubereau, External frequency modulation and compression of picosecond pulses, Phys.Lett., 29A: 539–540 (1969).CrossRefGoogle Scholar
  8. 8.
    E. B. Treacy, Optical pulse compression with diffraction gratings, IEEE J.Quantum Electron, QE-5: 454–458 (1969).Google Scholar
  9. 9.
    A. Laubereau and D. von der Linde, Frequenzmodulation and Kompression ultrakurzer Lichtimpulse, Z.Naturforsch, 25A: 1626–1642 (1970).Google Scholar
  10. 10.
    B. Ya. Zel’dovich and I. I. Sobel’man, Possibility of shortening light pulses in alkali-metal vapor, ZhETF Pis’ma Red, 13:182–185 (1971); JETP Lett., 13: 129–131 (1971).Google Scholar
  11. 11.
    R. A. Fisher and W. Bischel, The role of linear dispersion in plane-wave self-phase modulation, Appl.Phys.Lett., 23: 661–663 (1973).CrossRefGoogle Scholar
  12. 12.
    Pulse compression for more efficient operation of solid-state laser amplifier chains, Appl.Phys.Lett., 24: 468–470 (1974).CrossRefGoogle Scholar
  13. 13.
    D. Grischkowsky, Compression of low-intensity, phase modulated light pulses, IEEE J.Quantum Electron, QE-10: 723 (1974).Google Scholar
  14. 14.
    Optical pulse compression, Appl.Phys.Lett., 25: 566–568 (1974).CrossRefGoogle Scholar
  15. 15.
    J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, Conversion of c.w. light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor, Appl.Phys.Lett., 26: 564–566 (1975).CrossRefGoogle Scholar
  16. 16.
    R. H. Lehmberg and J. M. McMahon, Compression of 100 psec laser pulses, Appl.Phys.Lett., 28: 204–206 (1976).CrossRefGoogle Scholar
  17. 17.
    D. Grischkowsky, Adiabatic following and slow optical pulse propagation in rubidium vapor, Phys.Rev.A, 7: 2096–2102 (1973).CrossRefGoogle Scholar
  18. 18.
    M. M. T. Loy, A dispersive modulator, Appl.Phys.Lett., 26: 99–101 (1975).CrossRefGoogle Scholar
  19. 19.
    M. M. T. Loy, The dispersive modulator–A new concept in optical pulse compression, IEEE J.Quantum Electron, QE-13: 388–392 (1977).Google Scholar
  20. 20.
    D. Grischkowsky and M. M. T. Loy, Theory of the dispersive modulator, Appl.Phys.Lett., 26: 156–158 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • John K. Wigmore
    • 1
  • Daniel R. Grischkowsky
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations