Advertisement

Mid Infrared Optically Pumped Molecular Gas Lasers

  • R. G. Harrison
  • H. N. Rutt
Part of the NATO ASI Series book series (NSSB)

Abstract

Optically pumped molecular lasers (OPML) based on rotational transitions have been long recognised as sources of efficient and powerful far infrared (FIR) emission (50 μ – 3 mm). More recently the spectral coverage of these systems has been extended to the mid infrared (5–50 μm); motivated by the urgent need for such sources in photochemistry and spectroscopy. Based on the resonant excitation of vibrational rotational transitions, for which moderately high gains of 10−2 to 10−1 cm−1 may be readily obtained, many emissions in this spectral region have already been obtained, with powers in favourable cases being in excess of 1 MW and photon conversion efficiencies approaching 100%. The striking success of this approach, providing an efficient, non destructable and simple method for infra-red generation owes much to the development of several powerful pulsed discharge excited molecular. lasers. Of these the TEA CO2 system has emerged as the dominant pumping source generating an efficient multi megawatt single line emission step tunable (~ 2 cm−1 step interval) over a. fairly wide range (9–11μm) for which numerous molecules have vibrational absorption bands. The emissions shown in fig. (1), obtained using this pump source, contribute most of those reported over the last eight years; the predominance of emissions around 16 pm being in response to the demand for a source at this wavelength for the uranium enrichment programme. This chapter briefly reviews understanding and development of these systems over the last decade with some emphasis on recent progress in the field since 1982; comprehensive reviews on work prior to this date are to be found in refs (1–4).

Keywords

Pump Laser Permanent Dipole Moment Unstable Resonator Total Partition Function Collisional Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.Y. Chang, in Nonlinear Infrared Generation, Y.-R. Shen, ed. Springer-Verlag, Berlin (1977), pp 215 - 272.Google Scholar
  2. 2.
    C.R. Jones, Laser Focus, 14, No. 8, 68 (1978).Google Scholar
  3. 3.
    A.Z. Grasiuk, V.S. Letokhov, and V.V. Lobko, Prog.Quant. Electr. 6, 245; (1980).CrossRefGoogle Scholar
  4. 4.
    R.G. Harrison, P.K. Gupta, in Infrared and Millimeter Waves, vol. 7, K.J. Button, ed. to be published by Academic Press.Google Scholar
  5. 5.
    J.J. Tiee and C. Wittig, Appl. Phys. Lett. 30, 420 (1977).CrossRefGoogle Scholar
  6. 6.
    H.N. Rutt, Opt. Commun. 34, 434 (1980).CrossRefGoogle Scholar
  7. 7.
    T.A. Fischer, J.J. Tiee and C. Wittig, Appl. Phys. Lett. 37, 592 (1980).Google Scholar
  8. 8.
    T.A. Fischer and C. Wittig, Appl. Phys. Lett. 39, 6 (1981).CrossRefGoogle Scholar
  9. 9.
    R.R. Jacobs, D. Prosnitz, W.K. Bischel and C.K. Rhodes, Appl. Phys. Lett. 29, 710 (1976).CrossRefGoogle Scholar
  10. 10.
    J. Eggleston, J. Dallarosa, W.K. Bischel, J. Bokor and C.K. Rhodes, J. Appl. Phys. 5 1/4 3867 (1979).Google Scholar
  11. 11.
    A.N. Bobrovskii, A.A. Vedenov, A.V. Kozhevnikov and D.N. Sobolenko, JETP Lett. 29, 537 (1979).Google Scholar
  12. 12.
    R.M. Osgood Jr., Appl. Phys. Lett. 32 564 (1978).Google Scholar
  13. 13.
    J.J. Tiee, T.A. Fischer and C. Wittig, Rev. Sci. Instrum. 50, 958 (1979).CrossRefGoogle Scholar
  14. 14.
    V. Yu Baranov, S.A. Kazakov, V.S. Mezhevov, A.N. Napartovich M. Yu Orlov, V.D. Pismennyi, A.I. Starodubtsev and A.N. Startostin, (1980), Sov. J. Quantum Electron 10, 47.CrossRefGoogle Scholar
  15. 15.
    Handbook of Laser Science and Technology, vol II, M.J. Weber, ed., to be published by CRC Press, Boca Raton, EL.Google Scholar
  16. 16.
    V. Varanov, B.I. Vasilev, E.P. Velikhov, Yu. A. Gorokhov, A.L. Grasyuk, A.P. Dyadkin, S.A. Kazakov, V.S. Lotokhov, V.D. Pismenny and A.I. Starodubtsev, Sov. J. Quantum Electron 8, 544 (1978).CrossRefGoogle Scholar
  17. 17.
    J.M. Green, J. Phys. D: Applied Physics 12, 489 (1979).CrossRefGoogle Scholar
  18. 18.
    J.J. Tiee and C. Wittig, Opt. Commun. 27, 377 (1978).CrossRefGoogle Scholar
  19. 19.
    J.A. Horsley, P. Rabinowitz, A. Stein, D.M. Cos, R.O. Brickman and A. Kaldor, IEEE J. Quantum Electron. QE-16, 412 (1980).Google Scholar
  20. 20.
    H.N. Rutt and J.M. Green, Opt. Commun. 26, 422 (1978).CrossRefGoogle Scholar
  21. 21.
    B.K. Deka, P.E. Dyer and R.J. Winfield, Opt. Lett. 5, 194, (1980).CrossRefGoogle Scholar
  22. 22.
    A.H. Bushnell, C.R. Jones, M.I. Buchwald and M. Gundersen, IEEE J. Quantum Electron. QE-15, 208 (1979).Google Scholar
  23. 23.
    C.R. Jones, M.I. Buchwald, M. Gundersen and A.H. Bushnel, Opt. Commun. 24, 27 (1978).CrossRefGoogle Scholar
  24. 24.
    M.I. Buchwald, C.R. Jones, H.R. Fetterman and H.R. Schlossberg, Appl. Phys. Lett. 29, 300 (1976).CrossRefGoogle Scholar
  25. 25.
    W.E. Barch, H.R. Fetterman and H.R. Schlossberg, Opt. Commun. 15, 358 (1975).CrossRefGoogle Scholar
  26. 26.
    D. Prosnitz, R.R. Jacobs, W.K. Bischel and C.K. Rhodes, Appl. Phys. Lett. 32, 221 (1978).CrossRefGoogle Scholar
  27. 27.
    H.R. Schlossberg and H.R. Fetterman, Appl. Phys. Lett. 26, 316 (1975).CrossRefGoogle Scholar
  28. 28.
    E. Armandilloand J.M. Green, J. Phys. D: Appl. Phys. 11, 421 (1978).Google Scholar
  29. 29.
    J.J. Tiee and C. Wittig, J. Appl. Phys. 49, 61 (1978).CrossRefGoogle Scholar
  30. 30.
    T.Y. Chang and O.R. Wood II, Appl. Phys. Lett. 23, 370, (1973).CrossRefGoogle Scholar
  31. 31.
    T.Y. Chang and O.R. Wood II, IEEE J. Quantum Electron. QE-13, 907 (1977).Google Scholar
  32. 32.
    T.Y. Chang and O.R. Wood II, Appl. Phys. Lett. 24, 182 (1974).CrossRefGoogle Scholar
  33. 33.
    H. Kildal and T.F. Deutch, Appl. Phys. Lett. 27, 500 (1975).CrossRefGoogle Scholar
  34. 34.
    T.Y. Chang and J.D. McGee, Appl. Phys. Lett. 28, 256 (1976).CrossRefGoogle Scholar
  35. 35.
    S.M. Fry, Opt. Commun. 19, 320 (1976).CrossRefGoogle Scholar
  36. 36.
    P.K. Gupta, A.K. Kar, M.R. Taghizadeh and R.G. Harrison, Appl. Phys. Lett. 39, 32 (1981).CrossRefGoogle Scholar
  37. 37.
    B.I. Vasilev, A.Z. Grasyuk, A.P. Dyadkin, A.N. Sukhnov and A.B. Yasterbkov, Sov. J. Quantum Electron 10, 64 (1980).CrossRefGoogle Scholar
  38. 38.
    H. Tashiro, K. Suzuki, K. Toyoda and S. Namba, Appl. Phys. 21, 237 (1980).CrossRefGoogle Scholar
  39. 39.
    T. Yoshida, N. Yamabayashi, K. Miyazaki and K. Fujisawa, Opt. Commun. 26, 410 (1978).CrossRefGoogle Scholar
  40. 40.
    T.Y. Chang and J.D. McGee, Appl. Phys. Lett. 29, 725 (1976).CrossRefGoogle Scholar
  41. 41.
    C. Rolland, B.K. Garside and J. Reid, Appl. Phys. Lett. 40, 655 (1982).CrossRefGoogle Scholar
  42. 42.
    R.G. Harrison and F.A. Al-Watban, Opt. Commun. 20m 225 (1977).Google Scholar
  43. 43.
    R.G. Harrison, R.A. Wood and S.R. Butcher, Opt. Commun. 27, 157 (1978).CrossRefGoogle Scholar
  44. 44.
    R.G. Harrison, P.K. Gupta, M.R. Taghizadeh and A.K. Kar, IEEE J. Quantum Electron QE-18, 1239, (1982).Google Scholar
  45. 45.
    C.K.N. Patel, T.Y. Chang and V.T. Nguyen, Appl. Phys. Lett. 28, 603 (1976).CrossRefGoogle Scholar
  46. 46.
    R.V. Ambartsumian, Z.A. Grasiuk, A.P. Dyadkin, N.P. Furzihov, V.S. Letokhov and B.O. Vasilev, Appl. Phys. 15, 27 (1978).CrossRefGoogle Scholar
  47. 47.
    J.J. Tiee and C. Wittig, Appl. Phys. Lett 32, 236 (1978).CrossRefGoogle Scholar
  48. 48.
    B. Walker, G.W. Chantry and D.G. Moss, Opt. Commun. 23, 8, (1977).CrossRefGoogle Scholar
  49. 49.
    B.K. Deka, P.E. Dyer and I.K. Perera, Opt. Commun. 32, 295 (1980a).CrossRefGoogle Scholar
  50. 50.
    T. Stamatakis and J.M. Green Opt. Comm. 30, p413 (1979).Google Scholar
  51. 51.
    H.N. Rutt, (1981), UKAEA Culham Lab. Reprint CLM-P660.Google Scholar
  52. 52.
    T.A. DeTemple (1979) in Infrared and Millimeter Waves Vol.1 ed. Button K, (Academic Press, N. York, San Francisco, London ) p129.Google Scholar
  53. 53.
    T.Y. Chang, IEEE J. Quantum Electron QE-13, 937 (1977).Google Scholar
  54. 54.
    A.L. Golger and V.S. Letokhov Sov. J. Quantum Electron 3, 15, (1973).CrossRefGoogle Scholar
  55. 55.
    A.L. Golger and V.S. Letokhov, Sov. J. Quantum Electron 3, 428, 1974 ).CrossRefGoogle Scholar
  56. 56.
    P.K. Gupta and R.G. Harrison, IEEE J. Quantum Electron QE-17, 2238 (1981).Google Scholar
  57. 57.
    L.Y. Nelson, M I. Buchwald and C.R. Jones, Appl. Phys. Lett. 37 765 (1980)CrossRefGoogle Scholar
  58. 58.
    H.N. Rutt, D.N Travis and K.C. Hawkins, Int. J. IR and MM Waves (submitted)Google Scholar
  59. 59.
    P. Wazen and J M. Louritsz, Opt. Commun. 47, 137 (1983).CrossRefGoogle Scholar
  60. 60.
    P. Wazen and J M. Lourtisz, Appl. Phys. 832, 105 (1983).CrossRefGoogle Scholar
  61. 61.
    C. Rolland, J. Reid and B.K. Garside, Appl. Phys. Lett. 44, 725 (1984)CrossRefGoogle Scholar
  62. 62.
    C. Rolland, J. Reid and B.K. Garside, Appl. Phys. Lett. 44, 380 (1984)CrossRefGoogle Scholar
  63. 63.
    J. Telle, IEEE J. Quantum Electron, QE-19, 1469 (1983).Google Scholar
  64. 64.
    A. Stein, P. Rabinowitz and A. Kaldor, Opt. Lett. 3, 97 (1978).CrossRefGoogle Scholar
  65. 65.
    T.L. Stamatakis, D.A. Aldcroft and J.M. Green, J. Phys. B. 15, 3639 (1982).CrossRefGoogle Scholar
  66. 66.
    M.A. Gunderson and T.A. Yocom, J. Quantum Electron, QE-18, 1237 (1982).Google Scholar
  67. 67.
    P.F. Gascoyne and H.N. Rutt, J. Phys. E. Sci. Instrum. 16, 31 (1983).CrossRefGoogle Scholar
  68. 68.
    P.F. Gascoyne, K.C. Hawkins and H.N. Rutt, J. Phys. E.: Sci. Instrum. (submitted).Google Scholar
  69. 69.
    H.N. Rutt, J. Phys. E. Sci. Instrum. 17, - (1984).Google Scholar
  70. 70.
    J.J. Tiee, T.A. Fischer and C. Wittig, Rev. Sci. Instrum. 50, 958 (1979).CrossRefGoogle Scholar
  71. 71.
    J. Telle, Opt. Lett. 7, 201 (1982).CrossRefGoogle Scholar
  72. 72.
    H. Tashiro, H. Soyma, K. Toyoda and S. Samba, Appl. Phys. B, 34, 37 (1984).CrossRefGoogle Scholar
  73. 73.
    H.N. Rutt, Infrared Physics 1984 (in press).Google Scholar
  74. 74.
    H.N. Rutt and K.C. Hawkins, Opt. Commun (1984) (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • R. G. Harrison
    • 1
  • H. N. Rutt
    • 2
  1. 1.Department of PhysicsHeriot-Watt UniversityRiccarton, EdinburghUK
  2. 2.UKAEA Culham LaboratoryAbingdon, OxonUK

Personalised recommendations