Advertisement

Pre-Particle Chemistry in Soot Formation

  • J. D. Bittner
  • J. B. Howard

Abstract

Species and reactions involved in the early stages of soot formation prior to the formation of particles have been studied in flat low pressure flames of benzene using a molecular beam mass spectrometer system. In a near-sooting (equivalence ratio φ = 1.8) benzene-oxygen-argon flame, the profiles of molar flux versus distance from the burner for several reactant, intermediate, and product species were calculated from the mole fraction profiles. The flux profiles indicate that CO, C6H6O and C5H6 are early intermediates in the ring destruction process but that C2H2 is not. The flux profiles of C6H6 and C2H2 are consistent with benzene consumption by OH addition and the OH + C6H6 reaction having a much larger rate coefficient than OH + C2H2. A mechanism is outlined for production of C1, C2, C3, C4 and C5 species from benzene that is consistent with the flux profiles of intermediate species. The production of more hydrogenated species from those of low H/C ratio as they diffuse toward the burner surface is discussed.

Relative measurements of high molecular weight material (> 200 amu) as the fuel equivalence ratio is increased past the sooting limit (φ = 1.9) in benzene flames suggest a sequential growth process from polycyclic aromatic hydrocarbons (PAH) in the mass range 120–210 amu to higher molecular weight hydrocarbons and then to soot. A preliminary analysis of reaction mechanisms suggests that the role of the aromatic hydrocarbon is to provide a structure capable of stabilizing by internal aromatic substitution reactions radicals formed from addition of non-aromatic species. The presence of PAH in the oxidation zone of sooting C2H2 flames was also observed and suggests that aromatics may play a similar role in flames of non-aromatic fuels.

Keywords

Mole Fraction Soot Formation Oxidation Zone Flux Profile Combustion Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Bittner, and J. B. Howard, Alternative Hydrocarbon Fuels: Combustion and Chemical Kinetics, (C. T. Bowman and J. Birkeland, ed.) Prog. in Astro. and Aero., Vol. 62 (1978), p. 335, AIAA.Google Scholar
  2. 2.
    H.F. Butze, and R. C. Ehlers, “Effect of Fuel Properties on Performance of a Single Aircraft Turbojet Combustor”, NASA TM-71789, (1975).Google Scholar
  3. 3.
    W. S. Blazowski, Sixteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, Pa. (1977), p. 1631.Google Scholar
  4. 4.
    N. J. Friswell, Comb. Sci. and Tech., Vol. 19 (1979), p. 119.CrossRefGoogle Scholar
  5. 5.
    S. T. Minchin, J. oflnst. Petrol. Tech., Vol. 17 (1931), p. 102.Google Scholar
  6. 6.
    A. E. Clarke, T. G. Hunter, and F. H. Garner, J. of Petrol. Tech., Vol. 32 (1946), p. 627.Google Scholar
  7. 7.
    R. A Hunt, Jr., Ind. and Eng. Chem., Vol. 45 (1953), p. 602.CrossRefGoogle Scholar
  8. 8.
    R. L. Schalla, and G. E. McDonald, Ind. and Eng. Chem., Vol. 45 (1953), p. 1497.CrossRefGoogle Scholar
  9. 9.
    K. P. Schug, Y. Manheimer-Timnat, P. Yoccarino, and I. Glassman, Comb. Sci. and Tech., Vol. 22 (1980), p. 235.CrossRefGoogle Scholar
  10. 10.
    J. C. Street, and A. Thomas, Fuel, Vol. 34 (1955), p. 4.Google Scholar
  11. 11.
    J. J. Macfarlane, F. H. Holderness, and F. S. E. Witcher, Comb. and Flame, Vol. 8 (1964), p. 215.CrossRefGoogle Scholar
  12. 12.
    F. J. Wright, Twelfth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA., (1969), p. 867.Google Scholar
  13. 13.
    W. S. Blazowski, R. B. Edelman, and P. T. Harsha, “Fundamental Characterization of Alternate Fuel Effects in Continuous Combustion Systems,” Technical Progress Report prepared for DOE Contract EC-77-C-03–1543, (1978).Google Scholar
  14. 14.
    B. S. Haynes, H. Jander, and H. Gg. Wagner, Ber. Bunsenges. Phys. Chem., Vol. 84 (1980), p. 585.CrossRefGoogle Scholar
  15. 15.
    G. Prado, J. Jagoda, K. Neoh, and J. Lahaye, Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, (1981), to be published.Google Scholar
  16. 16.
    S. C. Graham, J. B. Homer, and J. L. J. Rosenfeld, Proc. Roy. Soc. Loud., Vol. 344 (1975), p. 259.CrossRefGoogle Scholar
  17. 17.
    D. B. Scully, and R. A. Davies, Comb. and Flame, Vol. 9 (1965), p. 185.CrossRefGoogle Scholar
  18. 18.
    R. A. Davies, D. B. Scully, Comb. and Flame, Vol. 10 (1966), p. 165.CrossRefGoogle Scholar
  19. 19.
    C. P. Fenimore, G. W. Jones, and G. E. Moore, Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, (1957), p. 242.Google Scholar
  20. 20.
    J. D. Bittner, Ph.D thesis, Department of Chemical Engineering, M.I.T., (1980).Google Scholar
  21. 21.
    J. D. Bittner, and J. B. Howard, Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, (1981), to be published.Google Scholar
  22. 22.
    R. M. Fristrom, and A. A. Westenberg, “Flame Structure”, McGraw-Hill, N.Y. (1965), pp. 74–80.Google Scholar
  23. 23.
    D. F. Fairbanks and C. R. Wilke, Ind. and Eng. Chem., Vol. 42, (1950), p. 471.CrossRefGoogle Scholar
  24. 24.
    R. M. Fristrom, and A. A. Westenberg, op. cit., p. 276.Google Scholar
  25. 25.
    R. A. Svehla, “Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures,” NASA Technical Report R-132 (1962).Google Scholar
  26. 26.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, “Molecular Theory of Gases and Liquids”, J. Wiley and Sons, N.Y., (1964), p. 1112.Google Scholar
  27. 27.
    L. S. Tee, S. Gotoh, and W. E. Stewart, Ind. and Eng. Chem. Fundam., Vol. 5 (1966), p. 356.CrossRefGoogle Scholar
  28. 28.
    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids“, 3rd ed., McGraw-Hill, N.Y., (1977), pp. 24 and 551.Google Scholar
  29. 29.
    R. S. Brokaw, Ind. Eng. Chem. Process Des. Dev., Vol. 8 (1969), p. 240.CrossRefGoogle Scholar
  30. 30.
    A. Savitsky and M. J. E. Golay, Anal. Chem., Vol 36 (1964), p. 1627.CrossRefGoogle Scholar
  31. 31.
    J. Steinier, and Y. Termonia, J. Deltour, Anal. Chem., Vol. 44 (1972), p. 1906.CrossRefGoogle Scholar
  32. 32.
    R. A. Bonanno, P. Kim, J. H. Lee, and R. B. Timmons, J. Chem. Phys., Vol. 57 (1972), p. 1377.CrossRefGoogle Scholar
  33. 33.
    T. M. Sloane, J. Chem. Phys., Vol. 67 (1977), p. 2267.CrossRefGoogle Scholar
  34. 34.
    G. Boocock, and R. J. Cvetanovic, Can. J. Chem., Vol. 39 (1961), p. 2436.CrossRefGoogle Scholar
  35. 35.
    P. Kim, J. H. Lee, R.J. Bonanno, and R. B. Timmons, J. Chem. Phys., Vol. 59 (1973), p. 4593.CrossRefGoogle Scholar
  36. 36.
    M. C. Sauer, Jr., and B. Ward, J. Phys. Chem., Vol. 71 (1967), p. 3971.CrossRefGoogle Scholar
  37. 37.
    R. A. Perry, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem., Vol. 81 (1977), p. 296.CrossRefGoogle Scholar
  38. 38.
    I. Mani, M. C. Sauer, Jr., Adv. Chem. Ser., Vol. 82 (1968), p. 142.CrossRefGoogle Scholar
  39. 39.
    S. J. Sibener, R. J. Buss, P. Casavecchia, T. Hirooka, and Y. T. Lee, J. Chem. Phys., Vol. 72 (1980), p. 4341.CrossRefGoogle Scholar
  40. 40.
    R. Cypres, and B. Bettens, Tetrahedron, Vol. 30 (1974), p. 1253.CrossRefGoogle Scholar
  41. 41.
    F. Slemr, and P. Warneck, Ber. Bunsenge. Phys. Chem., Vol. 79 (1975), p. 152.CrossRefGoogle Scholar
  42. 42.
    J. R. Kanofsky, D. Lucas, F. Pruss, and D. Gutman, J. Phys. Chem., Vol. 78 (1974), p. 311.CrossRefGoogle Scholar
  43. 43.
    H. Gg. Wagner, and R. Zellner, Ber. Bunsenges. Phys. Chem., Vol. 76 (1972), p. 518.Google Scholar
  44. 44.
    K. H. Homann, W. Schwanebeck, and J. Warnatz, Ber. Bunsenges. Phys. Chem., Vol. 79 (1975), p. 536.CrossRefGoogle Scholar
  45. 45.
    H. Niki, and B. Weinstock, J. Chem. Phys., Vol. 45 (1966), p. 3468.CrossRefGoogle Scholar
  46. 46.
    K. H. Homann, J. Warnatz, and C. Wellman, Sixteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, (1977), p. 853.Google Scholar
  47. 47.
    J. Peeters and G. Mahnen, “Combustion Institute European Symposium”, Academic Press, N.Y., (1973), p. 53.Google Scholar
  48. 48.
    R. Atkinson and J. N. Pitts, Jr., J. Phys. Chem., Vol. 79 (1975), p. 295.CrossRefGoogle Scholar
  49. 49.
    A. J. Colussi, J. L. Singleton, R. S. Irwin, and R. J. Cvetanovic, J. Phys. Chem., Vol. 79 (1975), p. 1900.CrossRefGoogle Scholar
  50. 50.
    D. A. Hansen, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem., Vol. 79 (1975), p. 1763.CrossRefGoogle Scholar
  51. 51.
    F. H. Field, and J. L. Franklin, “Electron Impact Phenomena and the Properties of Gaseous Ions”, Academic Press, N.Y., (1970), pp. 239–522.Google Scholar
  52. 52.
    S. M. Faist, “Analysis of Stable Species in a Benzene-Oxygen-Argon Laminar Premixed Flame by Chemical and Spectroscopic Techniques: Applications to Soot Formation and Combustion Chamber Deposits”, M.S. thesis, Department of Chemical Engineering, M.I.T., (1979).Google Scholar
  53. 53.
    D. B. Olson, H. F. Calcote, Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, (1981), to be published.Google Scholar
  54. 54.
    J. D. Bittner, Comment following paper by P. Michaud, J. L. Delfau, and A. Barassin, Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pits-burgh, PA, (1981), to be published.Google Scholar
  55. 55.
    P. Michaud, J. L. Delfau, A. Barassin, Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, (1981), to be published.Google Scholar
  56. 56.
    R. D. Smith, Comb. and Flame, Vol. 35 (1979), p. 179.CrossRefGoogle Scholar
  57. 57.
    R. D. Smith, J. Phys. Chem., Vol. 83 (1979), p. 1553.CrossRefGoogle Scholar
  58. 58.
    J. H. Kent, H. Jander, and H. Gg. Wagner, Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, (1981), to be published.Google Scholar
  59. 59.
    S. W. Benson, “Thermochemical Kinetics”, J. Wiley and Sons, N.Y. (1976).Google Scholar
  60. 60.
    S. E. Stein, D. M. Golden, and S. W. Benson, J. Phys. Chem. Vol. 81 (1977), p. 314.CrossRefGoogle Scholar
  61. 61.
    Handbook of Chemistry of Physics“, 60th ed., (R. C. Weast, ed.). CRC Press, Boca Raton, FL, (1979), p. F-231.Google Scholar
  62. 62.
    M. Cowperthwaite, and S. H. Bauer, J. Chem. Phys., Vol. 36 (1962), p. 1743.CrossRefGoogle Scholar
  63. 63.
    T. Flitcroft, H. A. Skiner, M. C. Whiting, Trans. Faraday Soc., Vol. 53 (1957), p. 784.CrossRefGoogle Scholar
  64. 64.
    T. L. Flitcroft, and H. A. Skinner, Trans. Faraday Soc., Vol. 54 (1958), p. 47.CrossRefGoogle Scholar
  65. 65.
    H.A. Skinner, and A. Snelson, Trans. Faraday Soc., Vol. 55 (1959), p. 404.CrossRefGoogle Scholar
  66. 66.
    S. E. Stein, and D. M. Golden, J. Org. Chem., Vol. 42 (1977), p. 839.CrossRefGoogle Scholar
  67. 67.
    M. J. Perkins, in “Free Radicals”, (J. Kochi, ed.), J. Wiley and Sons, N.Y., (1973), p. 231.Google Scholar
  68. 68.
    J. D. Bittner, J. A. Cole, J. P. Longwell, and J. B. Howard, manuscript in preparation.Google Scholar
  69. 69.
    B. D. Crittendon, and R. Long, Comb. and Flame, Vol. 20 (1973), p. 359.CrossRefGoogle Scholar
  70. 70.
    K. H. Homann, and H. Gg. Wagner, Eleventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, (1967), p. 371.Google Scholar
  71. 71.
    A. Di Lorenzo, A. D’Alessio, V. Cincotti, S. Masi, P. Menna, and C. Venitozzi, Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, (1981), to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • J. D. Bittner
    • 1
  • J. B. Howard
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations