Advertisement

Optical Properties and Morphology of Particulate Carbon: Variation with Air/Fuel Ratio

  • D. M. Roessler
  • F. R. Faxvog
  • R. Stevenson
  • G. W. Smith

Abstract

The specific optical extinction, composition, and morphology of diesel particulate emissions vary strongly with engine operating conditions such as air/fuel ratio. Particles produced at low air/fuel ratios are highly agglomerated, consist primarily of elemental carbon, and have large values of specific optical extinction; at high air/fuel ratios particles are less agglomerated, contain considerable volatile organic material, and have decreased specific extinction. Calculations based on Mie theory and the Rayleigh approximation for spheroids show that the variation in optical properties depends primarily on particle shape (i.e., morphology), but that composition also plays a role.

We have developed a simple nucleation/depletion model for the size of the fundamental spherical subunits (spherules) which agglomerate to form diesel particles. The model correctly estimates the magnitude of the spherule radius ~10 nm) and predicts that the spherule size decreases with formation temperature.

Keywords

Diesel Engine Mass Concentration Critical Nucleus Shape Effect Oblate Spheroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. T. Vuk, M. A. Jones and J. H. Johnson, SAE Paper 760131, Society of Automotive Engineers, Warrendale PA, February 1976.Google Scholar
  2. 2.
    W. H. Lipkea, J. H. Johnson and C. T. Vuk, SAE Paper 780108, Society of Automotive Engineers, Warrendale PA, February 1978.Google Scholar
  3. 3.
    K. Carpenter and J. H. Johnson, SAE Paper 790815, Society of Automotive Engineers, Warrendale PA, February 1979.Google Scholar
  4. 4.
    J. S. MacDonald, S. L. Plee, J. B. D’Arcy and R. M. Schreck, SAE Paper 800185, Society of Automotive Engineers, Warrendale PA, February 1980.Google Scholar
  5. 5.
    R. C. Bascom, W. S. Chiu and R. J. Padd, SAE Paper 730212, Society of Automotive Engineers, Warrendale PA, February 1973.Google Scholar
  6. 6.
    M. Vulliamy and J. Spiers, SAE Paper 670090, Society of Automotive Engineers, Warrendale PA, January 1967.Google Scholar
  7. 7.
    F. J. Hills, T. O. Wagner and D. K. Lawrence, SAE Paper 690493, Society of Automotive Engineers, Warrendale PA, February 1969.Google Scholar
  8. 8.
    A. W. Carey, Jr., SAE Paper 690492, Society ofAutomotive Engineers, Warrendale PA, February 1969.Google Scholar
  9. 9.
    W. Bryzik and C. O. Smith, SAE Paper 770718, Society of Automotive Engineers, Warrendale PA, February 1977.Google Scholar
  10. 10.
    A. Laresgoiti, A. C. Loos and G. S. Springer, Envir. Sci. Techn., Vol. 11 (1977), p. 973.CrossRefGoogle Scholar
  11. 11.
    D. M. Roessler and F. R. Faxvog, Appl. Optics, Vol. 18 (1979), p. 1399.CrossRefGoogle Scholar
  12. 12.
    F. R. Faxvog and D. M. Roessler, J. Appl. Phys., Vol. 50 (1979), p. 7880.CrossRefGoogle Scholar
  13. 13.
    D. M. Roessler and F. R. Faxvog, J. Opt. Soc. Amer., Vol. 69 (1979), p. 1699.CrossRefGoogle Scholar
  14. 14.
    R. L. Williams and C. R. Begeman, Proc. 17th Annual Purdue Air Quality Conference, Purdue University, May 1979.Google Scholar
  15. 15.
    E. F. Funkenbusch, D. G. Leddy and J. H. Johnson, SAE Paper 790418, Society of Automotive Engineers, Warrendale PA, February 1979.Google Scholar
  16. 16.
    W. J. Mayer, D. C. Lechman and D. L. Hilden, SAE Paper 800256, Society ofAutomotive Engineers, Warrendale PA, February 1980.Google Scholar
  17. 17.
    H. C. Van De Hulst, “Light Scattering by Small Particles,” Wiley, N.Y., 1957, pp. 110–111.Google Scholar
  18. 18.
    G. Mie, Ann. Phys., Vol. 25 (1908) p. 337.Google Scholar
  19. 19.
    D. M. Roessler and F. R. Faxvog, J. Opt. Soc. Am., Vol. 70 (1980), p. 230.CrossRefGoogle Scholar
  20. 20.
    J. Janzen, J. Colloid Interface Sci., Vol. 69 (1979), p. 436.CrossRefGoogle Scholar
  21. 21.
    C. F. Bohren and N. C. Wickramasinghe, Astrophysics and Space Science, Vol. 50 (1977), p. 461.CrossRefGoogle Scholar
  22. 22.
    C. G. Granqvist and O. Hunderi, Phys. Rev., Vol. B18 (1978), p. 2897.CrossRefGoogle Scholar
  23. 23.
    D. E. Aspnes, J. B Theeten and F. Hottier, Phys. Rev., Vol. B20 (1979), p. 3292.CrossRefGoogle Scholar
  24. 24.
    D. B. Kittelson and D. F. Dolan, Conf. on Carbonaceous Particles in the Atmosphere, Berkeley, California, March 1978.Google Scholar
  25. 25.
    N. J. Khatri, J. H. Johnson and D. G. Leddy, SAE Paper 780111, Society of Automotive Engineers, Warrendale PA, February 1978.Google Scholar
  26. 26.
    S. L. Plee and J. S. MacDonald, SAE Paper 800186, Society of Automotive Engineers, Warrendale PA, February 1980.Google Scholar
  27. 27.
    A. L. Aden and M. Kerker,-J. Appl. Phys., Vol. 22 (1951), p. 1242.Google Scholar
  28. 28.
    F. R. Faxvog and D. M. Roessler, Appl. Optics, Vol. 17 (1978), p. 2612.Google Scholar
  29. 29.
    S. Asano and M. Sato, Appl. Optics, Vol. 19 (1980), p. 962.CrossRefGoogle Scholar
  30. 30.
    B. W. Fowler and C. C. Sung, J. Opt. Soc. Am., 69 (1979), p. 756.CrossRefGoogle Scholar
  31. 31.
    A. Cohen and P. Alpert, J. Appl. Phys., Vol. 50 (1979), p. 8262.CrossRefGoogle Scholar
  32. 32.
    E. M. Purcell and C. R. Pennypacker, Astrophys. J., Vol. 186 (1973), p. 705.CrossRefGoogle Scholar
  33. 33.
    R. M. Welch and S. K. Cox, Appl. Optics, Vol. 17 (1978), p. 3159.CrossRefGoogle Scholar
  34. 34.
    J. M. Greenberg, J. Colloid Interface Sci., Vol. 39 (1972), p. 513.CrossRefGoogle Scholar
  35. 35.
    R. H. Zerull, Beit. Phys. Atmos., Vol. 49 (1976), p. 168.Google Scholar
  36. 36.
    Light Scattering by Irregularly Shaped Particles,“ D. W. Schuerman ed., Proc. of Int. Workshop, Albany, NY, 1979, Plenum Press, NY 1980.Google Scholar
  37. 37.
    P. J. Groblicki and C. R. Begeman, SAE Paper 790421, Society of Automotive Engineers, Warrendale PA, February 1979.Google Scholar
  38. 38.
    D. F. Dolan and D. B. Kittelson, SAE Paper 780110, Society of Automotive Engineers, Warrendale PA, February 1978.Google Scholar
  39. 39.
    A. R. Jones, Proc. Roy. Soc. Lond., A366 (1979), p. 111.CrossRefGoogle Scholar
  40. 40.
    A. R. Jones, J. Phys. D: Appl. Phys., Vol. 12 (1979), p. 1661.CrossRefGoogle Scholar
  41. 41.
    A. R. Jones, J. Phys. D: Appl. Phys., Vol. 5 (1972), p. LI.Google Scholar
  42. 42.
    J. C. Ravey, Colloid and Polymer Sci., Vol. 253 (1975), p. 292.CrossRefGoogle Scholar
  43. 43.
    J. C. Ravey, S. Premilat and P. Horn, European Polymer Journal, Vol. 6 (1975), p. 1527.CrossRefGoogle Scholar
  44. 44.
    S. C. Graham, Combustion Sci. and Techn., Vol. 9 (1974), p. 159.CrossRefGoogle Scholar
  45. 45.
    D. M. Roessler and F. R. Faxvog, Appl. Optics, Vol. 19 (1980), p. 578.CrossRefGoogle Scholar
  46. 46.
    J. B. Howard, B. L. Wersborg and G. C. Williams in “Faraday Symposium No. 7, Fogs and Smokes,” Faraday Division, Chemical Society, London, 1973, p. 109ff.Google Scholar
  47. 47.
    H. Gg. Wagner in “Seventeenth Symposium (International) on Combustion,” The Combustion Institute, Pittsburgh, 1978, p. 3ff.Google Scholar
  48. 48.
    G. W. Smith, to be submitted for publication.Google Scholar
  49. 49.
    J. Lahaye, G. Prado and J. B. Donnet, Carbon, Vol. 12 (1974), p. 27;CrossRefGoogle Scholar
  50. J. Lahaye and G. Prado, Phys. Chem. of Carbon, Vol. 14 (1978), p. 167.Google Scholar
  51. 50.
    Faraday Symposium No. 7, Fogs and Smoke,“ Faraday Division, Chemical Society, London, 1973.Google Scholar
  52. 51.
    N. A. Fuchs and A. G. Sutugin, “Highly Dispersed Aerosols,” Ann Arbor Science Publishers, Ann Arbor MI, 1970, p. 8.Google Scholar
  53. 52.
    J. Frenkel, “Kinetic Theory of Liquids,” Dover, NY, 1955, p. 376.Google Scholar
  54. 53.
    R. F. Strickland-Constable, “Kinetics and Mechanism of Crystallization,” Academic Press, London, 1968, p.44 ff.Google Scholar
  55. 54.
    J. P. Hirth and G. M. Pound, “Condensation and Evaporation,” Pergamon Press, NY, 1963, p. 15ff.Google Scholar
  56. 55.
    D. Turnbull, Solid Sate Physics, Vol. 3 (1956), p. 225.CrossRefGoogle Scholar
  57. 56.
    J. W. Mullin, “Crystallization,” CRC Press, Cleveland, 1972, p. 139ff.Google Scholar
  58. 57.
    H. N. V. Temperley, “Changes of State,” Cleaver-Hume, London, 1956, p. 89ff.Google Scholar
  59. 58.
    J. B. Homer and A. Prothero, Far. Trans. I (Phys. Chem.), Vol. 69 (1973), p. 673.CrossRefGoogle Scholar
  60. 59.
    Handbook of Chemistry and Physics,“ 61st Ed., CRC Press, Boca Raton, Fla., 1980, p. F-25ff.Google Scholar
  61. 60.
    Handbook of Physics“ (E. U. Condon and H. Odishaw, eds.) McGraw-Hill, NY, 1958, P. 5–94ff.Google Scholar
  62. 61.
    J. G. Kirkwood and F. P. Buff, J. Chem. Phys., Vol. 17 (1949), p. 338.CrossRefGoogle Scholar
  63. 62.
    R. P. Andreas, in “Nucleation” (A. C. Zettlemoyer, ed.), Dekker, NY, 1969, p. 69ff.Google Scholar
  64. 63.
    G. D. Ulrich, Comb. Sci. and Tech., Vol. 4 (1971), 47.CrossRefGoogle Scholar
  65. 64.
    R. G. Tabak, J. P. Hirth, G. Meyvick and T. P. Roark, Astrophys. J., Vol. 196 (1975), p. 457.CrossRefGoogle Scholar
  66. 65.
    P. A. Marsh, A. Voet, T. J. Mullens and L. D. Price, Carbon, Vol. 9 (1971), p. 797.CrossRefGoogle Scholar
  67. 66.
    R. Stevenson, to be submitted for publication.Google Scholar
  68. 67.
    J. B. Donnet and A. Voet, “Carbon Black,” Dekker, New York, 1976, p. 84ff.Google Scholar
  69. 68.
    A. G. Amelin, Koll. Zh., Vol. 29 (1967), p. 16.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • D. M. Roessler
    • 1
  • F. R. Faxvog
    • 1
  • R. Stevenson
    • 1
  • G. W. Smith
    • 1
  1. 1.General Motors Research LaboratoriesWarrenUSA

Personalised recommendations