Advertisement

Effects of Flame Temperature and Air-Fuel Mixing on Emission of Particulate Carbon from a Divided-Chamber Diesel Engine

  • S. L. Plee
  • T. Ahmad
  • J. P. Myers
  • D. C. Siegla

Abstract

The effect of flame temperature on particulate carbon emission from divided-chamber diesel engines was examined by adding various quantities of 02 and N2 to the intake air with the engines operating at several different loads and speeds. At a given operating condition for a fixed combustion chamber geometry, intake gas addition was expected to influence chemical kinetics without affecting the air-fuel mixing. Particulate carbon and CO were found to increase with N2 addition and decrease with 02 addition, whereas NOx emissions exhibited opposite trends.

Since the major portion of the combustion event in diesel engines is known to be diffusion controlled, changes in particulate carbon emissions due to 02 or N2 addition should be related to variations in the stoichiometric adiabatic flame temperature (Tf). Both soot and NOx emissions were correlated with calculated Tf −1, yielding overall activation energies for the processes involved. The overall activation energy for each pollutant was found to be independent of engine speed and load for a given combustion chamber geometry, indicating that the kinetic mechanisms involved in the generation of these species were not altered significantly by these engine parameters. In addition, a one-to-one correspondence was observed in this study between soot and CO, which suggests some similarity between the kinetic and air-fuel mixing processes governing the formation and oxidation of both.

Air-fuel mixing effects were varied by changing the load and speed and by employing different combustion chamber geometries. Variations in particulate carbon emissions with load and speed were characterized by a mixing parameter involving average fuel flow rate, engine speed, and the quantity of fuel injected per cycle, while for NOx the mixing parameter depended on average fuel flow rate and engine speed.

Keywords

Diesel Engine Equivalence Ratio Engine Speed Flame Temperature Diffusion Flame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nozzle opening area

Ainj

Nozzle opening area (Eq. 29)

a

Constant

B

Parameter(Table 2)

C, c

Constant

D

Combustion chamber diameter (Eq. 8)

Ds

Effective nozzle diameter (Eq. 4)

d

Nozzle orifice diameter (Eq. 8)

do

Injector hole diameter (Eq. 10 and Table 2)

E

Activation energy

EIC

Particulate carbon emission index

EINOx

NOx emission index

EICO

CO emission index

F

Quantity of fuel injected per cycle

Fs

Fraction of cylinder volume containing soot formation zones (Eq. 18)

G

Jet thrust (Table 2)

Ġo

Jet maomentum dlux (Eq.2)

g

Gravitational constant

H

Depth of combustion chamber (Eq. 8)

J

Momentum flux ratio (Eq. 8)

K

Equilibrium constants

k

Reaction rate constants

L

Length scale

s

Mass of soot (Eq. 18)

f

Fuel flow rate

fref

Fuel flow rate at a reference condition

fref

Non-dimensional fuel flow rate

o

Injector mass flow rate (Eq. 3)

N

Engine soeed

Nref

Engine speed at a reference condition

N*

Non-dimensional engine speed

n

Number of injector holes (Eq. 10)

n

Constant (Eq. 18)

P

Pressure

P

Constant

Po

Local partial pressure of 02 (Eq. 19)

Ps

Partial pressure of unburned soot (Eq. 18)

Q

Fuel per cycle (Eq. 10)

q

Constant

R

Universal gas constant

r

Constant

Re

Reynolds number

Ri

Richardson number

S

Swirl number

T

Temperature

Tf

Flame temperature

To

Local temperature

Tφ

Burned gas temperature

U

Mean air velocity

Us

Average velocity (Eq. 3)

Uinj

Mean injection velocity

U’

Turbulence velocity

W

Stirring factor (Table 2)

Xo2

Mole fraction oxygen

Xs

Pre-exponential factor (Eq. 18)

Xo

Pre-exponential factor (Eq. 19)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Khan, Proc. lnstn. Mech. Engrs., Vol. 184, Pt. 3J (1969–70), pp. 36–43.Google Scholar
  2. 2.
    I. M. Khan and C. H. T. Wang, Proc. Instn. Mech. Engrs., C151171 (1971), pp. 293303.Google Scholar
  3. 3.
    I. M. Khan, G. Greeves and C. H. T. Wang, SAE Paper No. 730169, Part I, (1973).Google Scholar
  4. 4.
    I. M. Khan, G. Greeves and D. M. Probert, Proc. Instn. Mech. Engrs., C151171 (1971), pp. 205–217.Google Scholar
  5. 5.
    I. M. Khan and G. Greeves, SAE Paper No. 730169, Part 11, (1973).Google Scholar
  6. 6.
    N. A. Henein, Prog. Energy Combust. Sci., Vol. 1 (1976), pp. 165–207.CrossRefGoogle Scholar
  7. 7.
    R. P. Wilson, E. B. Muir and F. A. Pellicciotti, SAE Paper No. 740123, (1974).Google Scholar
  8. 8.
    P. N. Blumberg, G. A. Lavoie and R. J. Tabaczynski, Prog. Energy Combust. Sci., Vol. 5 (1979), pp. 123–167.CrossRefGoogle Scholar
  9. 9.
    H. Gg. Wagner, “Seventeenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1979), pp. 3–19.Google Scholar
  10. 10.
    K. H. Homann, Combust. Flame, Vol. 11 (1967), pp. 265–287.CrossRefGoogle Scholar
  11. 11.
    J. C. Street and A. Thomas, Fuel, 34 (1955), pp. 4–36.Google Scholar
  12. 12.
    H. B. Palmer and C. F. Cullis, “Chemistry and Physics of Carbon,” ed. P. L. Walker, Jr., Marcel-Dekkerinc., New York, (1965), pp. 265–325.Google Scholar
  13. 13.
    A. G. Gaydon and H. F. Wolfhard, “Flames–Their Structure, Radiation and Temperature,” Chapman and Hall Ltd., London, (1970).Google Scholar
  14. 14.
    J. S. McArragher and K. J. Tan, Combust. Sci. Tech., Vol. 5 (1972), pp. 257–261.CrossRefGoogle Scholar
  15. 15.
    J. Lahaye and G. Prado, “Chemistry and Physics of Carbon,” ed. P. L. Walker, Jr., and P. A. Thrower, Marcel-Dekker Inc., New York, (1978), pp. 167–295.Google Scholar
  16. 16.
    D. Anderton, U.S. Dept. of Transportation Report No. DOT-TSC-OST-76–57, (1977).Google Scholar
  17. 17.
    D. Broome and I. M. Khan, Proc. Instn. Mech. Engrs., C140 /71 (1971), pp. 185–197.Google Scholar
  18. 18.
    C. A. Amann, D. L. Stivender, S. L. Plee and J. S. MacDonald, SAE Paper No. 800251, (1980).Google Scholar
  19. 19.
    I. Glassman, “Combustion,” Academic Press, New York, (1977).Google Scholar
  20. 20.
    W. T. Lyn “Ninth Symposium ( International) on Combustion,” Academic Press, New York, (1963), pp. 1069–1082.Google Scholar
  21. 21.
    J. Rife and J. B. Heywood, SAE Paper No. 740948, (1974).Google Scholar
  22. 22.
    N. A. Chigier, Prog. Energy Combust. Sci., Vol. 2 (1976), pp. 97–114.CrossRefGoogle Scholar
  23. 23.
    Y. Onuma and M. Ogasawara, “Fifteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1975), pp. 453–465.Google Scholar
  24. 24.
    Y. Onuma, M. Ogasawara and T. Inoue, “Sixteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1977), pp. 561–567.Google Scholar
  25. 25.
    I. M. Khan and G. Greeves, “Heat Transfer in Flames,” ed. N. H. Afgan and J. M. Beer, John Wiley and Sons, New York, (1975), pp. 391–404.Google Scholar
  26. 26.
    V. K. Duggal, T. Priede and I. M. Khan, SAE Paper No. 780227, (1978).Google Scholar
  27. 27.
    H. H. Chiu and T. M. Liu, Combust. Sci. Tech., Vol. 17 (1977), pp. 127–142.CrossRefGoogle Scholar
  28. 28.
    R. W. Temple-Pediani, Proc. Instn. Mech. Engrs., Vol. 187 (1973), pp. 395–404.Google Scholar
  29. 29.
    R. J. Harnes, D. F. Merrion and H. S. Ford, SAE Paper No. 710671, (1971).Google Scholar
  30. 30.
    R. Pischinger and W. Cartellieri, SAE Paper No. 720756, (1972).Google Scholar
  31. 31.
    C. J. Walder, SAE Paper No. 730214, (1973).Google Scholar
  32. 32.
    S. R. Krause, D. F. Merrion and G. L. Green, SAE Paper No. 730213, (1973).Google Scholar
  33. 33.
    R. B. Melton, S. J. Lestz, R. D. Quillian and E. J. Rambie, “Fifteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1975), pp. 1389–1399.Google Scholar
  34. 34.
    G. P. Gross and K. E. Murphy, ASME Paper No. 78-DGP-26, (1978).Google Scholar
  35. 35.
    G. Greeves, I. M. Khan and G. Onion, “Sixteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1977), pp. 321–336.Google Scholar
  36. 36.
    G. Greeves, SAE Paper No. 790037, (1979).Google Scholar
  37. 37.
    W. F. Marshall and R. D. Fleming SAE Paper No. 710836, (1971).Google Scholar
  38. 38.
    R. F. Parker and J. W. Walker, SAE Paper No. 720755, (1972).Google Scholar
  39. 39.
    R. C. Bascom, L. C. Broering and D. E. Wulfhorst, SAE Paper No. 710484, (1971).Google Scholar
  40. 40.
    S. K. Ray and R. Long, Combust. Flame, Vol. 8 (1964), pp. 139–151.CrossRefGoogle Scholar
  41. 41.
    D. W. Golothan, SAE Paper No. 670092, (1967).Google Scholar
  42. 42.
    C. O. Miller, SAE Paper No. 670093, (1967).Google Scholar
  43. 43.
    G. McConnell and H. E. Howells, SAE Paper No. 670091, (1967).Google Scholar
  44. 44.
    H. Tsunemoto and H. Ishitani, SAE Paper No. 800030, (1980).Google Scholar
  45. 45.
    U. Bonne, K. H. Hamann and H. Gg. Wagner, “Tenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1965), pp. 503–512.Google Scholar
  46. 46.
    F. J. Wright, “Twelfth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1969), pp. 867–875.Google Scholar
  47. 47.
    J. J. Macfarlane, F. H. Holderness and F. S. E. Whitcher, Combust. Flame, Vol. 8 (1964), pp. 215–229.CrossRefGoogle Scholar
  48. 48.
    P. Dearden and R. Long, J. Appl. Chem., Vol. 18 (1968), pp. 243–251.CrossRefGoogle Scholar
  49. 49.
    I. S. McLintock, Combust. Flame, Vol. 12 (1968), pp. 217–225.CrossRefGoogle Scholar
  50. 50.
    K. P. Schug, Y. Manheimer-Timnat, P. Yaccarino and I. Glassman, Combust. Sci. Tech. Vol. 22 (1980), pp. 235–250CrossRefGoogle Scholar
  51. 51.
    J. M. Jones and J. L. J. Rosenfeld, Combust. Flame, Vol. 19 (1972), pp. 427–434.CrossRefGoogle Scholar
  52. 52.
    F. J. Wright, Fuel, Vol. 53 (1974), pp. 232–235.CrossRefGoogle Scholar
  53. 53.
    B. B. Chakraborty and R. Long, Combust. Flame, Vol. 12 (1968), pp. 469–476.CrossRefGoogle Scholar
  54. 54.
    I. Glassman and P. Yaccarino, “Eighteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, to be published (1981).Google Scholar
  55. 55.
    B. B. Chakraborty and R. Long, Combust. Flame, Vol. 12 (1968), pp. 226–242.CrossRefGoogle Scholar
  56. 56.
    R. L. Schalla and G. E. McDonald, “Fifth Symposium ( International) on Combustion,” Reinhold, New York, (1955), pp. 316–324.Google Scholar
  57. 57.
    Glassman and P. Yaccarino, Combust. Sci. Tech., to be published (1981).Google Scholar
  58. 58.
    T. Kadota, H. Hiroyasu and A. Furazandehmehr, Combust. Flame, Vol. 29 (1977), pp. 67–75.CrossRefGoogle Scholar
  59. 59.
    A. Sjogren, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 919–927.Google Scholar
  60. 60.
    P. W. Cooper, R. Kamo, C. J. Marek and C. W. Solbrig, Amer. Petrol. Inst. Publ. No. 1723, (1964).Google Scholar
  61. 61.
    S. R. Gollahalli, Combust. Flame, Vol. 34 (1979), pp. 141–151.CrossRefGoogle Scholar
  62. 62.
    A. A. Quader, SAE Paper No. 710009, (1971).Google Scholar
  63. 63.
    J. H. Tuttle, M. B. Colket, R. W. Bilger and A. M. Mellor, “Sixteenth Symposium (International) on Combustion,” The Combustion Institute, (1977), pp. 209–219.Google Scholar
  64. 64.
    R. F. Sawyer, N. P. Cernansky and A. K. Oppenheim, “Atomospheric Pollution by Aircraft Engines,” AGARD CP-125, Paper No. 22, (1973).Google Scholar
  65. 65.
    R. M. Washam and A. M. Mellor, AIAA J. Aircraft, Vol. 16 (1979), pp. 626–631.CrossRefGoogle Scholar
  66. 66.
    A. M. Mellor, “Semi-Empirical Correlations for Gas Turbine Emissions, Ignition and Flame Stablization,” Paper Presented at AGARD Propulsion and Energetics Panel, 54th Specialists’ Meeting on Combustion Modeling, (1979).Google Scholar
  67. 67.
    A. M. Mellor and R. M. Washam, ASME Paper No. 79-GT-194, (1979).Google Scholar
  68. 68.
    H. Hiroyasu and M. Arai, “Development and Use of Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions,” Paper Presented at Fifth International Automotive Propulsion Systems Symposium, (1980).Google Scholar
  69. 69.
    H. Hiroyasu and T. Kadota, SAE Paper No. 760129, (1976).Google Scholar
  70. 70.
    S. V. Patankar and D. B. Spalding, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 605–614.Google Scholar
  71. 71.
    A. D. Gosman, W. M. Pun, A. K. Runchal, D. B. Spalding and R. Wolfshtein, “Heat and Mass Transfer in Recirculating Flows,” Academic Press, London, (1969).Google Scholar
  72. 72.
    P. Hutchinson, E. E. Khalil, J. H. Whitelaw and G. Wigley, Journal of Heat Transfer, ASME, C98 (1976), pp. 276–283.CrossRefGoogle Scholar
  73. 73.
    B. E. Launder and D. B. Spalding, “Mathematical Models of Turbulence,” Academic Press, London, (1972).Google Scholar
  74. 74.
    R. W. Bilger, Prog. Energy Combust. Sci., Vol. 1 (1976), pp. 87–109.CrossRefGoogle Scholar
  75. 75.
    B. F. Magnussen, “Fifteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1975), pp. 1415–1425.Google Scholar
  76. 76.
    W. H. Dalzell, G. C. Williams and H. C. Hottel, Combust. Flame, Vol. 14 (1970), pp. 161–170.CrossRefGoogle Scholar
  77. 77.
    B. F. Magnussen and B. J. Hjertager, “Sixteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1977), pp. 719–729.Google Scholar
  78. 78.
    P. A. Tesner, T. D. Snegiriova and V. G. Knorre, Combust. Flame, Vol. 17 (1971), pp. 253–260.CrossRefGoogle Scholar
  79. 79.
    P. A. Tesner, E. 1. Tsygankova, L. P. Guilazetdinor, V. P. Zuyer and G. V. Loshakova, Combust. Flame, Vol. 17 (1971), pp. 279–285.CrossRefGoogle Scholar
  80. 80.
    B. F. Magnussen, B. H. Hjertager, J. G. Olsen and D. Bhaduri, “Seventeenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1979), pp. 1383–1393.Google Scholar
  81. 81.
    H. A. Becker and S. Yamazaki, “Sixteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1977), pp. 681–691.Google Scholar
  82. 82.
    H. A. Becker, H.C. Hottel and G. C. Williams, “Ninth Symposium ( International) on Combustion,” Academic Press, New York, (1963), pp. 7–20.Google Scholar
  83. 83.
    H. A. Becker, H. C. Hottel and G. C. Williams, “Tenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1965), pp. 1253–1263.Google Scholar
  84. 84.
    S. T. R. Rao and R. J. Essenhigh, “Thirteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1971), pp. 603–615.Google Scholar
  85. 85.
    M. A. Zeinalov, M. Kuwata and R. J. Essenhigh, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 575–583.Google Scholar
  86. 86.
    R. J. Essenhigh, “Combustion Technology: Some Modern Developments,” Academic Press, New York, (1974), pp. 373–415.Google Scholar
  87. 87.
    L. A. Vulis, “Thermal Regimes of Combustion,” McGraw-Hill, New York, (1960).Google Scholar
  88. 88.
    J. Swithenbank, I. Poll, M. W. Vincent and D. D. Wright, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 627–638.Google Scholar
  89. 89.
    B. F. Magnussen, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 553–566.Google Scholar
  90. 90.
    N. A. Chigier, Prog. Energy Combust. Sci., 3 (1977), pp. 175–189.CrossRefGoogle Scholar
  91. 91.
    J. E. Bennethum, J. N. Mattavi and R. R. Toepel, SAE Paper No. 750849, (1975).Google Scholar
  92. 92.
    N. A. Chigier, “Experimental Diagnostics in Gas Phase Combustion Systems,” AIAA, New York, (1977), pp. 337–356.Google Scholar
  93. 93.
    A. Ungut, A. J. Yule, D. S. Taylor and N. A. Chigier, AIAA J. Energy, Vol. 2 (1978), pp. 330–336.CrossRefGoogle Scholar
  94. 94.
    N. A. Chigier, A. Ungut and A. J. Yule, “Seventeenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1979), pp. 315–324.Google Scholar
  95. 95.
    D. L. Hartley, “Experimental Diagnostics in Gas Phase Combustion Systems,” AIAA, New York, (1977), pp. 467–477.Google Scholar
  96. 96.
    J. H. Tuttle, R. A. Shisler, R. W. Bilger and A. M. Mellor, Purdue University Combustion Laboratory Report PURDU-CL-75–04, (1975).Google Scholar
  97. 97.
    J. H. Tuttle, M. B. Colket and A. M. Mellor, Purdue University Combustion Laboratory Report PURDU-CL-76–05, (1976).Google Scholar
  98. 98.
    A. M. Mellor, Prog. Energy Combust. Sci., Vol. 1 (1976), pp. 111–113.CrossRefGoogle Scholar
  99. 99.
    W. J. Dodds, M. B. Colket and A. M. Mellor, Purdue University Combustion Laboratory Report PURDU-CL-76–06, (1976).Google Scholar
  100. 100.
    T. Kadota, N. A. Henein and D. U. Lee, “A New Approach to Study the Formation of Soot Particulates in Diesel Sprays,” Paper Presented at the Spring Technical Meeting, Combustion Institute Central States Section, (1980).Google Scholar
  101. 101.
    G. M. Faeth, Prog. Energy Combust. Sci., Vol. 3 (1977), pp. 191–224.CrossRefGoogle Scholar
  102. 102.
    K. T. Rhee, P. S. Myers and O. A. Uyehara, SAE Paper No. 780226, (1978).Google Scholar
  103. 103.
    D. R. Nightingale, SAE Paper No. 750848, (1975).Google Scholar
  104. 104.
    W. D. Whitehouse, E. Clough and P. S. Roberts, SAE Paper No. 770409, (1977).Google Scholar
  105. 105.
    Y. Matsui, T. Kamimoto and S. Matsuoka, SAE Paper No. 790491, (1979).Google Scholar
  106. 106.
    Y. Matsui, T. Kamimoto and S. Matsuoka, SAE Paper No. 800970, (1980).Google Scholar
  107. 107.
    S. Matsuoka, T. Kamimoto, Y. Matsui and Y. Aogi, “An Introduction to the Research on Combustion Mechanism and Formation-Extinction Processes of NOx and Soot-Particulates in a Direct Injection Diesel Engine,” Paper Presented at the Thirteenth International Congress of Automobile Technology, (1980).Google Scholar
  108. 108.
    C. J. Morris and J. C. Dent, Proc. Inst. Mech. Engrs., 19047 /76, (1976), pp. 503–513.CrossRefGoogle Scholar
  109. 109.
    F. Brand!, I. Reverencic, W. Cartellieri and J. C. Dent, SAE Paper No. 790040, (1979).Google Scholar
  110. 110.
    J. C. Dent, SAE Paper No. 800092, (1980).Google Scholar
  111. 111.
    G. Greeves, SAE Paper No. 790037, (1979).Google Scholar
  112. 112.
    J. S. MacDonald, S. L. Plee, J. B. D’Arcy and R. M. Schreck, SAE Paper No. 800185, (1980).Google Scholar
  113. 113.
    R. L. Williams and D. P. Chock, “Characterization of Diesel Particulate Exposure,” Paper Presented to the International Symposium on Health Effects of Diesel Engine Emissions, December 3, Cincinnati, Ohio,(1979).Google Scholar
  114. 114.
    D. R. Lancaster, R. B. Krieger and J. H. Lienesch, SAE Paper No. 750026, (1975).Google Scholar
  115. 115.
    R. V. Fischer and J. P. Macey, SAE Paper No. 750028, (1975).Google Scholar
  116. 116.
    L. E. Frisch, J. H. Johnson and D. G. Leddy, SAE Paper No. 790417, (1979).Google Scholar
  117. 117.
    F. Black and L. High, SAE Paper No. 790422, (1979).Google Scholar
  118. 118.
    F. J. Verkamp, A. J. Verdouw and J. G. Tomlinson, AIAA J. Aircraft, Vol. 11 (1974), pp. 340–344.CrossRefGoogle Scholar
  119. 119.
    S. Gordon and B. J. McBride, NASA Report No. SP-273, (1971).Google Scholar
  120. 120.
    L. S. Caretto, Prog. Energy Combust. Sci., Vol. 1 (1976), pp. 47–71.CrossRefGoogle Scholar
  121. 121.
    J. P. Appleton and J. B. Heywood, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 777–786.Google Scholar
  122. 122.
    D. E. Jensen and G. A. Jones, Combust. Flame, Vol. 32 (1978), pp. 1–34.CrossRefGoogle Scholar
  123. 123.
    J. B. Heywood, “Fifteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1975), pp. 1191–1211.Google Scholar
  124. 124.
    P. Blumberg and J. T. Kummer, Combust. Sci. Tech., Vol. 4 (1971), pp. 73–95.CrossRefGoogle Scholar
  125. 125.
    W. R. Aiman, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 861–868.Google Scholar
  126. 126.
    H. L. Green and W. R. Lane, “Particulate Clouds: Dusts, Smokes and Mists,” D. VanNostrand Co., Princeton, New Jersey, (1957).Google Scholar
  127. 127.
    K. B. Lee, M. W. Thring and J. M. Beer, Combust. Flame, Vol. 6 (1962), pp. 137–145.CrossRefGoogle Scholar
  128. 128.
    P. A. Tesner and A. M. Tsibulevsky, Combust., Expl. and Shock Waves, 3 (1969), pp. 163–167.CrossRefGoogle Scholar
  129. 129.
    C. Park and J. P. Appleton, Combust. Flame, Vol. 20 (1973), pp. 369–379.CrossRefGoogle Scholar
  130. 130.
    J. Nagle and R. F. Strickland-Constable, “Proceedings of the Fifth Carbon Conference,” 1 (1962), pp. 154–164.Google Scholar
  131. 131.
    F. J. Wright, “Fifteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1975), pp. 1449–1460.Google Scholar
  132. 132.
    C. P. Fenimore and G. W. Jones, J. Phys. Chem., Vol. 71 (1967), pp. 593–597.CrossRefGoogle Scholar
  133. 133.
    K. G. Neoh, J. B. Howard and A. F. Sarofim, “Particulate Carbon–Formation During Combustion,” Plenum Press, New York, this volume, p. 261.Google Scholar
  134. 134.
    P. A. Tesner and A. M. Tsibulevsky, Combust. Flame, Vol. 11 (1967), pp. 227–233.CrossRefGoogle Scholar
  135. 135.
    J. P. Appleton, “Atmospheric Pollution by Aircraft Engines,” AGARD CP-125, Paper No. 20, (1973).Google Scholar
  136. 136.
    N. M. Laurendeau, Prog. Energy Combust. Sci., Vol. 4 (1978), pp. 221–270.CrossRefGoogle Scholar
  137. 137.
    R. M. Fristrom and A. A. Westenberg, “Flame Structure,” McGraw-Hill, New York, (1965).Google Scholar
  138. 138.
    H. Tennekes and J. L. Lumley, “A First Course in Turbulence,” The MIT Press, Cambridge, Massachusetts, (1972).Google Scholar
  139. 139.
    J. H. Kent and R. W. Bilger, “Fourteenth Symposium ( International) on Combustion,” The Combustion Institute, Pittsburgh, (1973), pp. 615–625.Google Scholar
  140. 140.
    D. R. Lancaster, SAE Paper No. 760159, (1976).Google Scholar
  141. 141.
    S. Ohigashi, Y. Hamamoto and S. Tanabe, Proc. Instn. Mech. Engrs., C134 /71, (1971), pp. 129–136.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • S. L. Plee
    • 1
  • T. Ahmad
    • 1
  • J. P. Myers
    • 1
  • D. C. Siegla
    • 1
  1. 1.General Motors Research LaboratoriesWarrenUSA

Personalised recommendations