Skip to main content

A Phenomenological Description of Particulate Formation during Constant Volume Combustion

  • Chapter
Particulate Carbon

Abstract

Experiments to characterize soot particulate formation processes during the combustion of rich homogeneous mixtures have been conducted in a constant volume combustion bomb. Soot formation is observed to occur very rapidly in the flame front, and the particles are dispersed over the burned gas region as these gases are continually compressed. Particles sampled and analyzed by transmission electron microscopy exhibit three-dimensional chain-like structures. In the present premixed experiments, any parameter change that increases the flame zone temperature, such as reducing the diluent concentration, decreasing the diluent heat capacity, increasing the initial reactant temperature, or changing the fuel type, reduces the quantity of soot formed. Thus, temperature is shown to be a key parameter in determining the tendency of a mixture to soot. In many of these tests, burned gas temperature is nearly constant with time, suggesting that particulate blackbody radiation may be a stabilizing influence on the burned gas temperature. Coupling this radiation back into the chamber influences the particulate oxidation process and actually reduces the quantity of soot formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. G. Gaydon and H. G. Wolfhard, “Flames,” Chapman & Hall Ltd., London, (1970).

    Google Scholar 

  2. H. G. Wagner, “Seventeenth Symposium ( Inernational) on Combustion,” The Combustion Institute, Pittsburgh, (1979), pp. 3–19.

    Google Scholar 

  3. I. Glassman, Phenomenological Models of Soot Processes in Combustion Systems, Princeton University Dept. of Mech. and Aero. Engr. Rept. 1450 (1979); also AFOSR TR 79–1147.

    Google Scholar 

  4. J. C. Street and A. Thomas, Fuel, Vol. 34 (1955), pp. 4–36.

    CAS  Google Scholar 

  5. R. C. Millikan, J. Phys. Chem., Vol. 66 (1962), p. 794.

    Article  CAS  Google Scholar 

  6. J. J. MacFarlane, F. H. Holderness and F. S. E. Whitcher, Combustion and Flame, Vol. 8 (1964), pp. 215–229.

    Article  Google Scholar 

  7. I. M. Khan, Proc. Instn. Mech. Engrs., 184, Pt 3J (1969), pp. 36–43.

    Google Scholar 

  8. I. M. Khan, C. H. T. Wang and B. E. Langridge, Combustion and Flame, Vol. 17 (1971), pp. 409–419.

    Article  CAS  Google Scholar 

  9. D. Broome and I. M. Khan, Proc. Instn. Mech. Engrs., C140171 (1971), pp. 185–197.

    Google Scholar 

  10. D. F. Dolan and D. B. Kittelson, SAE Paper 780110 (1978).

    Google Scholar 

  11. C. A. Amans, D. L. Stirende r, S. L. Plee, and J. S. MacDonald, SAE Paper No. 80025/ (1980).

    Google Scholar 

  12. M. Kerker, “The Scattering of Light,” Academic’ Press, New York, (1969).

    Google Scholar 

  13. G. Mie, Ann. Physik, Vol. 25 (1908), p. 377.

    Google Scholar 

  14. P. A. Bonczyk, Combustion and Flame, Vol. 35 (1979), p. 191.

    Article  CAS  Google Scholar 

  15. W. L. Flower and T. M. Dyer, Paper CSS/CI-01, Central States Meeting of the Combustion Institute, Baton Rouge, LA, March (1980).

    Google Scholar 

  16. S. S. Penner, “Quantitative Molecular Spectroscopy and Gas Emmissivities,” Addison-Wesley Pub. Co. Inc., Reading, MA, (1959).

    Google Scholar 

  17. Y. Matsui, T. Kamimoto and S. Matsuoka, SAE Paper 790491 (1979).

    Google Scholar 

  18. W. L. Flower and J. A. Miller, Report No. SAND79–8607, Sandia Laboratories, Livermore, CA (1979).

    Google Scholar 

  19. B. Lewis and G. von Elbe, “Combustion, Flames and Explosions of Gases,” Academic Press, New York (1961).

    Google Scholar 

  20. D. M. Roessler and F. R. Faxvog, J. Opt. Soc. Am., Vol. 70 (1980), p. 230.

    Article  CAS  Google Scholar 

  21. H. Senftleben and E. Benedict, Ann. Physick, Vol. 54 (1918), p. 65.

    Google Scholar 

  22. W. H. Dalzel and A. F. Sarofim, J. Heat Transfer, Vo!. 91 (1969), p. 100.

    Article  Google Scholar 

  23. G. Greeves and J. O. Meehan, Proc. Instil. Me ch. Engrs., C88175 (1975).

    Google Scholar 

  24. J. Janzen, Appl. Optics, Vol. 19 (1980), p. 2977.

    Article  CAS  Google Scholar 

  25. S. Gordon and B. J. McBride, NASA Lewis Research Center, NASA SP-273 (1971).

    Google Scholar 

  26. J. R. Smith, SAE Paper No. 800137 (1980).

    Google Scholar 

  27. G. Greeves and J. O. Meehan, Proc. Instil. Me ch. Engrs., C88175 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dyer, T.M., Flower, W.L. (1981). A Phenomenological Description of Particulate Formation during Constant Volume Combustion. In: Siegla, D.C., Smith, G.W. (eds) Particulate Carbon. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6137-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6137-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6139-9

  • Online ISBN: 978-1-4757-6137-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics