A Phenomenological Description of Particulate Formation during Constant Volume Combustion

  • T. M. Dyer
  • W. L. Flower


Experiments to characterize soot particulate formation processes during the combustion of rich homogeneous mixtures have been conducted in a constant volume combustion bomb. Soot formation is observed to occur very rapidly in the flame front, and the particles are dispersed over the burned gas region as these gases are continually compressed. Particles sampled and analyzed by transmission electron microscopy exhibit three-dimensional chain-like structures. In the present premixed experiments, any parameter change that increases the flame zone temperature, such as reducing the diluent concentration, decreasing the diluent heat capacity, increasing the initial reactant temperature, or changing the fuel type, reduces the quantity of soot formed. Thus, temperature is shown to be a key parameter in determining the tendency of a mixture to soot. In many of these tests, burned gas temperature is nearly constant with time, suggesting that particulate blackbody radiation may be a stabilizing influence on the burned gas temperature. Coupling this radiation back into the chamber influences the particulate oxidation process and actually reduces the quantity of soot formed.


Equivalence Ratio Flame Front Soot Particle Flame Temperature Premix Flame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Gaydon and H. G. Wolfhard, “Flames,” Chapman & Hall Ltd., London, (1970).Google Scholar
  2. 2.
    H. G. Wagner, “Seventeenth Symposium ( Inernational) on Combustion,” The Combustion Institute, Pittsburgh, (1979), pp. 3–19.Google Scholar
  3. 3.
    I. Glassman, Phenomenological Models of Soot Processes in Combustion Systems, Princeton University Dept. of Mech. and Aero. Engr. Rept. 1450 (1979); also AFOSR TR 79–1147.Google Scholar
  4. 4.
    J. C. Street and A. Thomas, Fuel, Vol. 34 (1955), pp. 4–36.Google Scholar
  5. 5.
    R. C. Millikan, J. Phys. Chem., Vol. 66 (1962), p. 794.CrossRefGoogle Scholar
  6. 6.
    J. J. MacFarlane, F. H. Holderness and F. S. E. Whitcher, Combustion and Flame, Vol. 8 (1964), pp. 215–229.CrossRefGoogle Scholar
  7. 7.
    I. M. Khan, Proc. Instn. Mech. Engrs., 184, Pt 3J (1969), pp. 36–43.Google Scholar
  8. 8.
    I. M. Khan, C. H. T. Wang and B. E. Langridge, Combustion and Flame, Vol. 17 (1971), pp. 409–419.CrossRefGoogle Scholar
  9. 9.
    D. Broome and I. M. Khan, Proc. Instn. Mech. Engrs., C140171 (1971), pp. 185–197.Google Scholar
  10. 10.
    D. F. Dolan and D. B. Kittelson, SAE Paper 780110 (1978).Google Scholar
  11. 11.
    C. A. Amans, D. L. Stirende r, S. L. Plee, and J. S. MacDonald, SAE Paper No. 80025/ (1980).Google Scholar
  12. 12.
    M. Kerker, “The Scattering of Light,” Academic’ Press, New York, (1969).Google Scholar
  13. 13.
    G. Mie, Ann. Physik, Vol. 25 (1908), p. 377.Google Scholar
  14. 14.
    P. A. Bonczyk, Combustion and Flame, Vol. 35 (1979), p. 191.CrossRefGoogle Scholar
  15. 15.
    W. L. Flower and T. M. Dyer, Paper CSS/CI-01, Central States Meeting of the Combustion Institute, Baton Rouge, LA, March (1980).Google Scholar
  16. 16.
    S. S. Penner, “Quantitative Molecular Spectroscopy and Gas Emmissivities,” Addison-Wesley Pub. Co. Inc., Reading, MA, (1959).Google Scholar
  17. 17.
    Y. Matsui, T. Kamimoto and S. Matsuoka, SAE Paper 790491 (1979).Google Scholar
  18. 18.
    W. L. Flower and J. A. Miller, Report No. SAND79–8607, Sandia Laboratories, Livermore, CA (1979).Google Scholar
  19. 19.
    B. Lewis and G. von Elbe, “Combustion, Flames and Explosions of Gases,” Academic Press, New York (1961).Google Scholar
  20. 20.
    D. M. Roessler and F. R. Faxvog, J. Opt. Soc. Am., Vol. 70 (1980), p. 230.CrossRefGoogle Scholar
  21. 21.
    H. Senftleben and E. Benedict, Ann. Physick, Vol. 54 (1918), p. 65.Google Scholar
  22. 22.
    W. H. Dalzel and A. F. Sarofim, J. Heat Transfer, Vo!. 91 (1969), p. 100.CrossRefGoogle Scholar
  23. 23.
    G. Greeves and J. O. Meehan, Proc. Instil. Me ch. Engrs., C88175 (1975).Google Scholar
  24. 24.
    J. Janzen, Appl. Optics, Vol. 19 (1980), p. 2977.CrossRefGoogle Scholar
  25. 25.
    S. Gordon and B. J. McBride, NASA Lewis Research Center, NASA SP-273 (1971).Google Scholar
  26. 26.
    J. R. Smith, SAE Paper No. 800137 (1980).Google Scholar
  27. 27.
    G. Greeves and J. O. Meehan, Proc. Instil. Me ch. Engrs., C88175 (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • T. M. Dyer
    • 1
  • W. L. Flower
    • 1
  1. 1.Sandia National LaboratoriesLivermoreUSA

Personalised recommendations