Advertisement

Soot Formation — An Overview

  • H. Gg. Wagner

Abstract

Formation of soot can take place in all kinds of practical combustion systems, especially in systems which operate on a diffusion flame concept. The influence of macroscopic system parameters on the amount of soot formed is rather well investigated for different systems. Even though these results often look unrelated to each other, the primary soot particles formed in various combustion processes are rather similar. Their mean diameter is usually a few hundred Angstroms. These particles often stick together and form long branched or straight chain aggregates and their number densities are very similar even under widely varied conditions, a consequence of their formation mechanism.

What comes out of a chimney or an exhaust pipe may look quite different. The formation of soot is usually accompanied by the formation of heavy hydrocarbons. Soot particles are very good absorbers. It depends on their history (time, temperature, concentrations), how much of other substances they absorb until they reach the open atmosphere.

“Particle history” is also important for the formation process of the soot particles. Even though they experience different surroundings during their growth in premixed combustion or in various types of diffusion flames, the results of the formation processes are rather similar.

Soot particles formed during combustion can be removed only by oxidation, by reactions with OH, O atoms or O2. Experiments show that this process is slow compared to the oxidation of hydrocarbon molecules and the necessary residence times for particle removal strongly increase with particle size.

Keywords

Diesel Engine Soot Particle Diffusion Flame Premix Flame Soot Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. B. Palmer, C. F. Cullis, in “Chemistry and Physics of Carbon,” ed. P. L. Walker, Marcel Dekker, New York, (1965), p. 265.Google Scholar
  2. 2.
    H. B. Palmer, D. Seery, Ann. Rev. Phys. Chem., Vol. 24 (1973), p. 253.CrossRefGoogle Scholar
  3. 3.
    J. B. Donnez, A. Voet, “Carbon Black”, Marcel Dekker, New York, (1976).Google Scholar
  4. 4.
    Ullmann 10, (1958), p. 7.Google Scholar
  5. 5.
    M. Cowperthwaite, S. H. Bauer, J. Chem. Phys. Vol. 36, No. 7 (1962), p. 1743;CrossRefGoogle Scholar
  6. 6.
    R. E. Duff, S. H. Bauer, J. Chem. Phys. Vol. 36, No. 7 (1962), p. 1754.CrossRefGoogle Scholar
  7. 6.
    S. E. Stein, J. Phys. Chem., Vol. 82 (1978), p. 566.CrossRefGoogle Scholar
  8. 8.
    K. H. Homann, Comb. and Flame, Vol. 11 (1967), p. 265.CrossRefGoogle Scholar
  9. 9.
    K. H. Homann, Angew. Chemie Vol. 80 (1968), p. 425.CrossRefGoogle Scholar
  10. 10.
    B. E. Warren, Phys. Rev. Vol. 59 (1941), p. 693.CrossRefGoogle Scholar
  11. 11.
    B. E. Warren, P. Bodenstein, Acta Cryst. Vol. 18 (1965), p. 289.CrossRefGoogle Scholar
  12. 12.
    A. E. Austin, Proc. 3rd. Conf. on Carbon, (1958), p. 389.Google Scholar
  13. 13.
    R. E. Franklin, Acta Cryst., Vol. 3 (1950), p. 107;CrossRefGoogle Scholar
  14. 14.
    R. E. Franklin, Acta Cryst. Vol. 4 (1951), p. 253;CrossRefGoogle Scholar
  15. 15.
    R. E. Franklin, Proc. Roy. Soc. A, Vol. 209 (1950), p. 196.Google Scholar
  16. 16.
    F. A. Heckmann, Rubber Chem. Technol., Vol. 37 (1964), p. 1245;CrossRefGoogle Scholar
  17. 17.
    F. A. Heckmann, D. E. Harlin, Rubber Chem. Technol., Vol. 39 (1966), p. 1.CrossRefGoogle Scholar
  18. 18.
    L. L. Ban, “Surface and Defect Properties of Solids”, The Chemical Society, London, Vol. 1 (1972);Google Scholar
  19. 19.
    L. L. Ban, W.M. Hess, 9th Bienn Conf. on Carbon (1963), p. 162;Google Scholar
  20. 20.
    L. L. Ban, W. M. Hess, Noreleco Reporter, Vol. 13 (1966), p. 4.Google Scholar
  21. 21.
    P. A. Marsh, A. Voet, T. J. Mullem, L. D. Price, Rubber Chem. Technol., Vol. 43 (1970), p. 470;CrossRefGoogle Scholar
  22. 22.
    P. A. Marsh, A. Voet, T. J. Mullem, L. D. Price, Carbon, Vol. 9 (1971), p. 797.CrossRefGoogle Scholar
  23. 23.
    S. Ergun, 10th Bienn. Conf. on Carbon, Bethlehem, Pa. (1971), p. 164.Google Scholar
  24. 24.
    S. H. Bauer, 10th Symposium (International) on Combustion (1965), p. 511.Google Scholar
  25. 25.
    C. R. Marchand, Acad. Sci. Paris, Vol. 238 (1954), p. 1645;Google Scholar
  26. 26.
    C. R. Marchand, Acad. Sci. Paris, Vol. 239 (1954), p. 1609.Google Scholar
  27. 27.
    D. J. Ingram, J. G. Tapley, R. Jackson, R. L. Bon, A. R. Murnagham, Nature, Vol. 174 (1954), p. 797.CrossRefGoogle Scholar
  28. 28.
    A. Pacault, Chemistry and Physics of Carbon, New York, Vol. 107 (1977).Google Scholar
  29. 29.
    E. Fitzer, K. Müller, W. Schäfer, Carbon, Vol. 7 (1971), p. 237.Google Scholar
  30. 30.
    K. H. Homann, FVM Frankfurt, Vol. 327 (1978), p. 137.Google Scholar
  31. 31.
    Landolt Bornstein IV Band, Vol. 4b (1972), p. 364.Google Scholar
  32. 32.
    J. C. Street, A. Thomas, Fuel, Vol. 34 (1955), p. 4;Google Scholar
  33. 33.
    A. Thomas, Comb. and Flame, Vol. 6 (1962), p. 46.CrossRefGoogle Scholar
  34. 34.
    C. P. Fenimore, G. W. Jones, G. E. Moore, 6th Symposium (International) on Combustion (1956), p. 242.Google Scholar
  35. 35.
    R. G. Millikan, J. Phys. Chem., Vol. 66 (1962), p. 794;CrossRefGoogle Scholar
  36. 36.
    R. G. Millikan, J. Opt. Soc. Am., Vol. 51 (1961), p. 535, p. 698;Google Scholar
  37. 37.
    R. G. Millikan, “Temperature, Its Measurement and Control in Science and Industry”, Reinhold, New York, London, Vol. 1112 (1962), p. 497;Google Scholar
  38. 38.
    R. G. Millkan, W. I. Foss, Comb. and Flame, Vol. 6 (1962), p. 210.CrossRefGoogle Scholar
  39. 39.
    J. Flossdorf, H. Gg. Wagner, Z. Phys. Chem., Vol. NF54 (1967), p. 8.Google Scholar
  40. 40.
    F. J. Wright, 12th Symposium (International) on Combustion (1969), p. 867;Google Scholar
  41. 41.
    F. J. Wright, Comb. and Flame, Vol. 15 (1970), p. 217.CrossRefGoogle Scholar
  42. 42.
    J. Flossdorf, W. Jost, H. Gg. Wagner, Ber. Bunsenges. Phys. Chem., Vol. 78 (1974), p. 378.Google Scholar
  43. 43.
    J. J. McFarlane, F. H. Holderness, F. S. E. Whitcher, Comb. and Flame, Vol. 8 (1964), p. 215.CrossRefGoogle Scholar
  44. 44.
    W. S. Blazowski, Combust. Sci. Tech., Vol. 21 (1980), p. 87.CrossRefGoogle Scholar
  45. 45.
    A. G. Gaydon, H. G. Wolfhard, “Flames, Their Structure, Radiation and Temperature”, 3rd ed. Chapman and Hall, London (1970).Google Scholar
  46. 46.
    A. G. Gaydon, G. Wittingham, Proc. Roy. Soc., Vol. A179 (1947), p. 303.Google Scholar
  47. 47.
    J. R. Arthur, D. H. Napier, 5th Symposium (International) on Combustion (1955), p. 303.Google Scholar
  48. 48.
    A. E. Clark, T. G. Hunter, F. R. Garner, J. Inst. Petrol., Vol. 32 (1946), p. 627;Google Scholar
  49. 49.
    A. E. Clark, J. Odgers, P. Rayan, 8th Symposium (International) on Combustion (1962), p. 982;Google Scholar
  50. 50.
    A. E. Clark, F. W. Stringer, A. J. Harrison, 10th Symposium (International) on Combustion (1965), p. 1151.Google Scholar
  51. 51.
    K. P. Schug, Y. Manheimer-Timnat, P. Yaccarino, I. Glassman, Combust. Sci. Tech., (to appear).Google Scholar
  52. 52.
    W. G. Parker, H. G. Wolfhard, J. Chem. Soc. (1950), p. 2038.Google Scholar
  53. 53.
    R. L. Schalla, G. E. McDonald, 5th Symposium (International) on Combustion (1955), p. 316.Google Scholar
  54. 54.
    I. S. McLintock, Comb. and Flame, Vol. 12 (1968), p. 217.CrossRefGoogle Scholar
  55. 55.
    J. Kern, G. Spengler, Erdöl-Kohle-Erdgas-Petrochem., Vol. 23 (1970), p. 813.Google Scholar
  56. 56.
    B. S. Haynes, H. Gg. Wagner, Ber. Bunsenges. Phys. Chem., Vol. 84 (1980), p. 499.CrossRefGoogle Scholar
  57. 57.
    J. H. Kent, H. Jander, H. Gg., Wagner, 18th Symposium (International) on Cornbustion, (to appear).Google Scholar
  58. 58.
    F. G. Roper, Comb. and Flame, Vol. 29 (1977), p. 219.CrossRefGoogle Scholar
  59. 59.
    F. G. Roper, C. Smith, A. C. Cummingham, Comb. and Flame, Vol. 29 (1977), p. 227.CrossRefGoogle Scholar
  60. 60.
    S. W. Radcliff, J. P. Appleton, Comb. Science and Technol., Vol. 4 (1971), p. 171.CrossRefGoogle Scholar
  61. 61.
    K. B. Lee, M. W. Thring, J. M. Beer, Comb. and Flame, Vol. 6 (1962), p. 137.CrossRefGoogle Scholar
  62. 62.
    C. P. Fenimore, G. W. Jones, J. Phys. Chem., Vol. 71 (1967), p. 593.CrossRefGoogle Scholar
  63. 63.
    L. Kurylko, R. M. Essenhigh, 14th Symposium (International) on Combustion (1973), p. 1375.Google Scholar
  64. 64.
    J. M. Kahn, C. H. T. Wang, B. E. Langridge, Comb. and Flame, Vol. 17 (1971), p. 409.Google Scholar
  65. 65.
    W. M. Dalzell, G. C. Williams, H. C. Hotte!, Comb. and Flame, Vol. 14 (1970), p. 161.CrossRefGoogle Scholar
  66. 66.
    B. F. Magnussen, 15th Symposium (International) on Combustion (1975), p. 1415;Google Scholar
  67. 67.
    B. F. Magnussen, 16th Symposium (International) on Combustion (1977), p. 719.Google Scholar
  68. 68.
    H. A. Becker, S. Yamazaki, 16th Symposium (International) on Combustion (1977), p. 681.Google Scholar
  69. 69.
    K. Hein, Com. Sci. and Technol., Vol. 5 (1972), p. 195.CrossRefGoogle Scholar
  70. 70.
    N. A. Chigier, Prog. Energy Combust. Sci., Vol. 2 (1976), p. 97.CrossRefGoogle Scholar
  71. 71.
    Y. Onuma, M. Ogasawara, 15th Symposium (International) on Combustion (1975), p. 453;Google Scholar
  72. 72.
    Y. Onuma, M. Ogasawara, T. Inoue, 16th Symposium (International) on Combustion (1977), p. 561.Google Scholar
  73. 73.
    G. P. Prado, M. L. Lee, R. A. Hites, D. P. Hoult, J. B. Howard, 16th Symposium (International) on Combustion (1977), p. 649.Google Scholar
  74. 74.
    J. P. Appleton, J. B. Heywood, 14th Symposium (International) on Combustion (1973), p. 777.Google Scholar
  75. 75.
    F. J. Weinberg, Symposium of the Faraday Society, Vol. 7 (1973), pp. 120–132.CrossRefGoogle Scholar
  76. 76.
    W. S. Blazowski, Progr. Energy Combust. Sci., Vol. 4 (1978), p. 177.CrossRefGoogle Scholar
  77. 77.
    A. H. Lefebvre, 15th Symposium (International) on Combustion (1975), p. 1169.Google Scholar
  78. 78.
    A. M. Mellor, Progr. Energy Combust. Sci., Vol. 1 (1976), p. 111.CrossRefGoogle Scholar
  79. 79.
    W. Hilburger, Diplomarbeit, Stuttgart (1976).Google Scholar
  80. 80.
    N. A. Henein, Progr. Energy Combust. Sci., Vol. 1 (1976), p. 165.CrossRefGoogle Scholar
  81. 81.
    C. V. Vuk, M. A. Jones, J. H. Johnson, SAE paper 760131 (1976).Google Scholar
  82. 82.
    G. Greeves, J. O. Meehan, Paper C88175 presented to Institutionof Mechanical Engineers Conference on “Combustion in Engines,” Cranfield, (1975);Google Scholar
  83. 83.
    V. K. Duggal, T. Priede, I. M. Khan, SAE Technical Paper 780227 (1978).Google Scholar
  84. 84.
    I. M. Khan, Inst. Mech. Eng. Proc., Vol. 184 (1969), p. 35.Google Scholar
  85. 85.
    J. Lahaye, G. Prado, Chemistry and Physics of Carbon, (P. L. Walker and P. A. Thrower, eds.), Marcel Dekker, New York, Vol. 14 (1978), pp. 168–294.Google Scholar
  86. 86.
    A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, 16th Symposium (International) on Combustion (1977), p. 695.Google Scholar
  87. 87.
    S. C. Graham, 16th Symposium (International) on Combustion (1977), p. 663.Google Scholar
  88. 88.
    S. C. Graham, J. B. Homer, J. L. J. Rosenfeld, Proc. Roy. Soc. A, Vol. 344 (1975), p. 259.CrossRefGoogle Scholar
  89. 89.
    F. S. Lai, S. K. Friedländer, J. Pich, C. M. Hidy, J. Colloid and Interface Sci., Vol. 39 (1972), p. 395.CrossRefGoogle Scholar
  90. 90.
    C. M. Hidy, J. R. Brock, The Dynamics of Aerocolloidal Systems, Pergamon (1970).Google Scholar
  91. 91.
    G. D. Ulrich, Comb. Science Technol., Vol. 4 (1971), p. 47.CrossRefGoogle Scholar
  92. 92.
    S. C. Graham, A. Robinson, J. Aerosol, Vol. 7 (1976), p. 261.CrossRefGoogle Scholar
  93. 93.
    S. C. Graham, J. B. Homer, J. L. H. Rosenfeld, 10th International Shock Tube Symposium, Kyoto (1975), p. 621.Google Scholar
  94. 94.
    U. Bonne, H. Gg. Wagner, Ber. Bunsenges. Phys. Chem., Vol. 69 (1965), p. 35.Google Scholar
  95. 95.
    K. H. Homann, H. Gg. Wagner, 11th Symposium (International) on Combustion (1967), p. 371.Google Scholar
  96. 96.
    A. D’Alessio, A. Di Lorenzo, A. F. Sarofim, F. Beretta, S. Masi, C. Venitozzi, 15th Symposium (International) on Combustion (1975), p. 1427.Google Scholar
  97. 97.
    B. S. Haynes, H. Jander, H. Gg. Wagner, Ber. Bunsenges. Phys. Chem., Vol. 84 (1980), p. 585.CrossRefGoogle Scholar
  98. 98.
    B. S. Haynes, H. Jander, H. Gg. Wagner, 17th Symposium (International) on Combustion (1979), p. 1365.Google Scholar
  99. 99.
    G. M. Hidy, J. R. Brock, “The Dynamics of Aerocolloidal Systems”, Pergamon, Oxford (1970).Google Scholar
  100. 100.
    J. B. Howard, 12th Symposium (International) on Combustion (1969), p. 877.Google Scholar
  101. 101.
    K. H. Homann, (private communication).Google Scholar
  102. 102.
    W.J. Hooker, 7th Symposium (International) on Combustion (1959), p. 949.Google Scholar
  103. 103.
    W. Buckendahl, Diplomarbeit Göttingen (1970).Google Scholar
  104. 104.
    I. L. Mar’yasin, Z. A. Nabutowski, Kinetics and Catalysis, Vol. 10 (1969), p. 983;Google Scholar
  105. 105.
    I. L. Mar’yasin, Z. A. Nabutowski, Kinetics and Catalysis, Vol. 11 (1970), p. 706;Google Scholar
  106. 106.
    I. L. Mar’yasin, Z. A. Nabutowski, Kinetics and Catalysis, Vol. 14 (1973), p. 139.Google Scholar
  107. 107.
    C. C. Geck, Diplomarbeit Göttingen (1975).Google Scholar
  108. 108.
    R. B. Cundall, D. E. Fussey, A. J. Harrison, D. Lampard, 11th International Shock Tube Symposium, Seattle (1977);Google Scholar
  109. 109.
    R. B. Cundall, D. E. Fussey, A. J. Harrison, and D. Lampard, J. C. S., Faraday Trans. I, Vol. 74 (1978), p. 1403;CrossRefGoogle Scholar
  110. 110.
    R. B. Cundall, D. E. Fussey, A. J. Harrison, D. Lampard, J. C. S., Faraday Trans. I, Vol. 75 (1979), p. 1390.CrossRefGoogle Scholar
  111. 111.
    J. B. Howard, 12th Symposium (International) on Combustion (1969), p. 877;Google Scholar
  112. 112.
    R. T. Ball, J. B. Howard, 13th Symposium (International) on Combustion (1971), p. 353;Google Scholar
  113. 113.
    B. L. Wersborg, J. B. Howard, G. C. Williams, 14th Symposium (International) on Combustion (1973), p. 929;Google Scholar
  114. 114.
    J. B. Howard, B. L. Wersborg, G. C. Williams, Faraday Symposia of the Chemical Society, Vol. 7 (1973), p. 109;CrossRefGoogle Scholar
  115. 115.
    B. L. Wersborg, A. C. Yeung, J. B. Howard, 15th Symposium (International) on Combustion (1974), p. 1439;Google Scholar
  116. 116.
    B. L. Wersborg, L. K. Fox, J.B. Howard, Comb. and Flame, Vol. 24 (1975), p. 1.CrossRefGoogle Scholar
  117. 117.
    E. E. Tompkins, R. Long, 12th Symposium (International) on Combustion (1969), p. 625;Google Scholar
  118. 118.
    R. Long, E. E. Tompkins, Nature, Vol. 213 (1967), p. 1011.CrossRefGoogle Scholar
  119. 119.
    K. H. Homann, H. Gg. Wagner, Ber. Bunsenges. Phys. Chem., Vol. 69 (1965), p. 20;Google Scholar
  120. 120.
    U. Bonne, H. Gg. Wagner, Ber. Bunsenges. Phys. Chem., Vol. 69 (1965), p. 35;Google Scholar
  121. 121.
    K. H. Homann, H. Gg. Wagner, 11th Symposium (international) on Combustion (1967), p. 371;Google Scholar
  122. 122.
    K. H. Homann, M. Mochizuki, H. Gg. Wagner, Z. Phys. Chem. NF, Vol. 37 (1963), p. 299;CrossRefGoogle Scholar
  123. 123.
    K. H. Homann, H. Gg. Wagner, Proc. Roy. Soc. A, Vol. 307 (1968), p. 141CrossRefGoogle Scholar
  124. 124.
    A. D’Alessio, A. Di Lorenzo, F. Beretta, C. Venitozzi, 14th Symposium (International) on Combustion (1973), p. 941;Google Scholar
  125. 125.
    A. D’Alessio, A. Di Lorenzo, A. F. Sarofim, F. Beretta, S. Masi, C. Venitozzi, 15th Symposium (International) on Combustion (1975), p. 1427.Google Scholar
  126. 126.
    Th. Just, (private communication).Google Scholar
  127. 127.
    H. F. Calcote, “Ion-Molecule Reactions”, (J. L. Franklin, ed.), Plenum Press, New York, Vol. 2 (1972), pp. 673–706.Google Scholar
  128. 128.
    K. H. Homann, Ber. Bunsenges. Phys. Chem., Vol. 83 (1979), p. 738.CrossRefGoogle Scholar
  129. 129.
    R. S. Tse, P. Michaud, J. L. Delfau, Nature, Vol. 272 (1978), p. 153;CrossRefGoogle Scholar
  130. 130.
    J. L. Delfau, P. Michaud, A. Barassin, Combust. Sci. Tech., Vol. 20 (1979), p. 165.CrossRefGoogle Scholar
  131. 131.
    W. Morgeneyer, Dissertation, Göttingen (1968).Google Scholar
  132. 132.
    J. P. Bittner, J. B. Howard, 18th Symposium (International) on Combustion (to appear).Google Scholar
  133. 133.
    C. W. Sireitzer, G. L. Heller, Rubber World, Vol. 134 (1956), p. 855.Google Scholar
  134. 134.
    W. G. Parker, H. G. Wolfhard, J. Chem. Soc. London (1950), p. 2038.Google Scholar
  135. 135.
    G. Prado, J. Lahaye, J. de Chim. Physique, Vol. 72 (1975), p. 483;Google Scholar
  136. 136.
    G. Prado, J. Lahaye, Water, Air and Soil Pollution, Vol. 3 (1974), p. 473.CrossRefGoogle Scholar
  137. 137.
    K. H. Homann, 16th Symposium (International) on Combustion (1976), p. 717.Google Scholar
  138. 138.
    H. Gg. Wagner, 17th Symposium (International) on Combustion (1979), p. 3;Google Scholar
  139. 139.
    B. S. Haynes, H. Gg. Wagner, Progress in Energy and Comb. Sci. (to appear).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • H. Gg. Wagner
    • 1
  1. 1.Institut für Physikalische ChemieUniversität GöttingenWest Germany

Personalised recommendations