A New Intrinsic Hypoxia Marker in Esophageal Cancer

  • Ivan Ding
  • Paul Okunieff
  • Weimin Liu
  • Bruce Fenton
  • Konstantin Salnikow
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 540)


During the past three decades, the incidence of esophageal adenocarcinoma (EAC) in the US increased by 5- to 6-fold, with a yearly increase of 4–10%.1 The prognosis for EAC is extremely poor, and the 5 year survival rate is ~10%.1−3 Despite significant improvements in early diagnosis and treatment, the majority of deaths in EAC patients are attributable to metastases that are resistant to therapy.2,3


Esophageal Cancer Esophageal Carcinoma Esophageal Adenocarcinoma Tumor Hypoxia Esophageal Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Chen, and C. S. Yang, Esophageal adenocarcinoma: a review and perspectives on the mechanism of carcinogenesis and chemoprevention, Carcinogenesis 22, 1119–29 (2001).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Romagnoli, M. Roncalli, D. Graziani, B. Cassani, E. Roz, L. Bonavina, A. Peracchia, S. Bosari, and G. Coggi, Molecular alterations of Barrett’s esophagus on microdissected endoscopic biopsies, Lab Invest. 81, 241–7 (2001).PubMedCrossRefGoogle Scholar
  3. 3.
    C. A. Eads, R. V. Lord, K. Wickramasinghe, T. I. Long, S. K. Kurumboor, L. Bernstein, J. H. Peters, S. R. DeMeester, T. R. DeMeester, K. A. Skinner, and P. W. Laird, Epigenetic patterns in the progression of esophageal adenocarcinoma, Cancer Res. 61, 3410–8 (2001).PubMedGoogle Scholar
  4. 4.
    J. Denekamp, Inadequate vasculature in solid tumours: consequences for cancer research strategies, BJR Suppl. 24, 111–7 (1992).Google Scholar
  5. 5.
    P. Vaupel, and M. Höckel, Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance, Int. J. Oncol. 17, 869–79 (2000).PubMedGoogle Scholar
  6. 6.
    M. Höckel, K. Schlenger, M. Mitze, U. Schaffer, and P. Vaupel, Hypoxia and Radiation Response in Human Tumors, Semin. Radial. Oncol. 6, 3–9 (1996).CrossRefGoogle Scholar
  7. 7.
    G. U. Dachs, and D. J. Chaplin, Microenvironmental control of gene expression: implications for tumor angiogenesis, progression, and metastasis, Semin. Radial. Oncol. 8, 208–16 (1998).CrossRefGoogle Scholar
  8. 8.
    G. U. Dachs, and G. M. Tozer, Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation, Eur. J Cancer 36, 1649–60 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    T. G. Graeber, C. Osmanian, T. Jacks, D. E. Housman, C. J. Koch, S. W. Lowe, and A. J. Giaccia, Hypoxiamediated selection of cells with diminished apoptotic potential in solid tumours, Nature 379, 88–91 (1996).PubMedCrossRefGoogle Scholar
  10. 10.
    N. Denko, C. Schindler, A. Koong, K. Laderoute, C. Green, and A. Giaccia, Epigenetic regulation of gene expression in cervical cancer cells by the tumor microenvironment, Clin. Cancer Res. 6, 480–7 (2000).PubMedGoogle Scholar
  11. 11.
    P. Okunieff, I. Ding, P. Vaupel, and M. Höckel, Evidence for and against hypoxia as the primary cause of tumor aggressiveness, Adv. Exp. Med. (in press), (2002).Google Scholar
  12. 12.
    A. S. Ljungkvist, J. Bussink, and P. F. Rijken, Changes in tumor hypoxia measured with a double hypoxic marker technique, Int. J. Radial. Oncol. Biol. Phys. 48, 1529–38 (2000).CrossRefGoogle Scholar
  13. 13.
    K. Kokame, H. Kato, and T. Miyata, Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis. GRP78BiP and novel genes, J. Biot Chem. 271, 29659–65 (1996).CrossRefGoogle Scholar
  14. 14.
    K. Salnikow, M. V. Blagosklonny, H. Ryan, R. Johnson, and M. Costa, Carcinogenic nickel induces genes involved with hypoxic stress, Cancer Res. 60, 38–41 (2000).PubMedGoogle Scholar
  15. 15.
    H. Park, M. A. Adams, P. Lachat, F. Bosman, S. C. Pang, and C. H. Graham, Hypoxia induces the expression of a 43-kDa protein (PROXY-I) in normal and malignant cells. Biochem. Biophys. Res. Commun. 276, 321–8 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    E.M. Lord, L. Harwell, and C. J. Koch, Detection of hypoxic cells by monoclonal antibody recognizing 2nitroimidazole adducts, Cancer Res. 53, 5721–6 (1993).PubMedGoogle Scholar
  17. 17.
    B. M. Fenton, S. F. Paoni, J. Lee, C. J. Koch, and E. M. Lord, Quantification of tumour vasculature and hypoxia by immunohistochemical staining and HbO2 saturation measurements, Br. J. Cancer. 79, 464–71 (1999).PubMedCrossRefGoogle Scholar
  18. 18.
    B. M. Fenton, S. F. Paoni, B. K. Beauchamp, B. Tran, L. Liang, B. Grimwood, and I. Ding, Evaluation of microreginal variations in tumor hypoxia following the administration of endostatin, Adv. Exp. Med. (in press) (2002).Google Scholar
  19. 19.
    L. Zhang, S. Kharbanda, D. Chen, J. Bullocks, D. L. Miller, I. Y. Ding, J. Hanfelt, S. W. McLeskey, and F. G. Kern, MCF-7 breast carcinoma cells overexpressing FGF-1 form vascularized, metastatic tumors in ovariectomized or tamoxifen-treated nude mice, Oncogene. 15, 2093–108 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Ivan Ding
    • 1
  • Paul Okunieff
    • 1
  • Weimin Liu
    • 1
  • Bruce Fenton
    • 1
  • Konstantin Salnikow
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.New York University School of MedicineNew YorkUSA

Personalised recommendations