Advertisement

Steady-State MR Imaging with Mion for Quantification of Angiogenesis in Normal Brain and in Brain Tumors

  • Jeff F. Dunn
  • Marcie A. Roche
  • Roger Springett
  • Michelle Abajian
  • Jennifer Merlis
  • Charles P. Daghlian
  • Shi Y. Lu
  • Julia A. O’Hara
  • Malek Makki
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 540)

Abstract

Angiogenesis plays a role in the normal response of brain to low oxygen stress, as well as in many pathological conditions such as stroke and tumor growth. Angiogenesis, or the growth of new capillaries, will improve flow to ischemic areas of the brain, and the inhibition of angiogenesis is now a major target of new anti-cancer agents.

Keywords

Cerebral Blood Flow Cerebral Blood Volume Chronic Hypoxia Hypobaric Hypoxia Custom Macro 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.Z. Simonsen, L. Ostergaard, D.F. Smith, P. Vestergaard-Poulsen, C. Gyldensted, Comparison of gradient-and spin-echo imaging: CBF, CBV, and MTT measurements by bolus tracking, J Magn Reson Imag, 12 (3), 411–6 (2000).CrossRefGoogle Scholar
  2. 2.
    A. Gossmann, T.H. Helbich, N. Kuriyama, S. Ostrowitzki, T.P. Roberts, D.M. Shames, N. van Bruggen, M.F. Wendland, M.A. Israel, R.C. Brasch, Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme, JMagn Reson Imag, 15 (3), 233–40 (2002).CrossRefGoogle Scholar
  3. 3.
    W. Lin, A. Celik, R.P. Paczynski, Regional cerebral blood volume: a comparison of the dynamic imaging and the steady state methods, JMagn Reson Imag 9 (1), 44–52 (1999).CrossRefGoogle Scholar
  4. 4.
    J. Dennie, J.B. Mandeville, J.L. Boxerman, S.D. Packard, B.R. Rosen, R.M. Weisskoff, NMR imaging of changes in vascular morphology due to tumor angiogenesis, Magn Reson Med, 40 (6), 793–9 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    J.F. Dunn, O. Grinberg, M. Roche, C.I. Nwaigwe, H.G. Hou, H.M. Swartz, Non-invasive assessment of cerebral oxygenation during acclimation to hypobaric hypoxia, J Cereb Blood Flow and Met, 20, 1632–1635 (2000).CrossRefGoogle Scholar
  6. 6.
    J.W. Severinghaus, H. Chiodi, E.t.d. Eger, B. Brandstater, T.F. Hombein, Cerebral blood flow in man at high altitude. Role of cerebrospinal fluid pH in normalization of flow in chronic hypocapnia, Circ Res, 19 (2), 274–82 (1966).PubMedCrossRefGoogle Scholar
  7. 7.
    D.E. Wilkins, G.P. Raaphorst, J.K. Saunders, G.R. Sutherland, I.C. Smith, Correlation between Gd-enhanced MR imaging and histopathology in treated and untreated 9L rat brain tumors, Magn Reson Imag, 13 (1), 89–96 (1995).CrossRefGoogle Scholar
  8. 8.
    G.P. Paxinos, C. Watson. The rat brain in stereotaxic coordinates. London: Academic Press, 1986.Google Scholar
  9. 9.
    M. Anwar, J. Weiss, H.R. Weiss, Quantitative determination of morphometric indices of the total and perfused capillary network of the newborn pig brain, Pediat Res, 32 (5), 542–6 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    J.A. Boero, J. Ascher, A. Arregui, C. Rovainen, T.A. Woolsey, Increased brain capillaries in chronic hypoxia, JAppl Physiol, 86 (4), 1211–9 (1999).Google Scholar
  11. 11.
    J.C. LaManna, Rat brain adaptation to chronic hypobaric hypoxia, Advances in Experimental Medicine, and Biology, 317, 107–14 (1992).CrossRefGoogle Scholar
  12. 12.
    J.H. Jensen, R. Chandra, MR imaging of microvasculature, Magn Reson Med, 44 (2), 224–30 (2000).PubMedCrossRefGoogle Scholar
  13. S.P. Lee, T.Q. Duong, G. Yang, C. Iadecola, S.G. Kim, Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI, Magn. Reson. in Med.,45(5), 791–800 (2001).Google Scholar
  14. 14.
    M.M. Todd, J. Weeks, Comparative effects of propofol, pentobarbital, and isoflurane on cerebral blood flow and blood volume, J Neurosurg Anesth, 8 (4), 296–303 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jeff F. Dunn
    • 1
  • Marcie A. Roche
    • 1
  • Roger Springett
    • 1
  • Michelle Abajian
    • 1
  • Jennifer Merlis
    • 1
  • Charles P. Daghlian
    • 2
  • Shi Y. Lu
    • 1
  • Julia A. O’Hara
    • 1
  • Malek Makki
    • 1
  1. 1.Department of RadiologyDartmouth Medical SchoolHanoverUSA
  2. 2.Rippel E. M. FacilityDartmouth Medical SchoolUSA

Personalised recommendations