Theoretical Studies of IMAC Interfacial Phenomena for the Production of Protein C

  • E. Eileen Thiessen
  • Duane F. Bruley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 540)


Presently the most commonly used anticoagulant drug for protein C (PC) deficiency is coumadin. This oral anticoagulant acts by inhibiting the action of vitamin K, which in turn inhibits the activity of coagulation proteins Factor V and Factor VIII. Though often used for long-term therapy, coumadin is also likely to cause complications such as minor to persistent bleeding, sensitivity reactions, and in more severe cases, skin necrosis. It has also been suggested that long-term use of this oral anticoagulant could lead to tissue and organ damage.


Immobilize Metal Affinity Chromatography Bovine Protein Maryland Baltimore County Cohn Fraction Gulf Publishing Company 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruley, D. F., and Drohan, W. N., 1990, Protein C and Related Anticoagulants: Advances in Applied Biotechnology Series, Gulf Publishing Company, Houston, Vol. 11.Google Scholar
  2. Christiansen, W. T., Tulinsky, A., and Castellino, F. J., 1994, Functions of individual gamma-carboxyglutamic acid (Gla) residues of human protein C. Determination of functionally nonessential Gla residues and correlations with their mode of binding to calcium, Biochemistry 33: 14993.PubMedCrossRefGoogle Scholar
  3. Colpitts, T. L., Prorok, M., and Castelli, F. J., 1995, Binding of calcium to individual gamma-carboxyglutamic acid residues of human protein C, Biochemistry 34: 2424.PubMedCrossRefGoogle Scholar
  4. Dahlback, B., Lundwall, A., and Stenflo, J., 1986, Primary structure of bovine vitamin K-dependent protein S, P. Natl Acad. Sci. USA 83: 4199.CrossRefGoogle Scholar
  5. Dahlback, B., 1995, The protein C anticoagulant system: inherited defects as basis for venous thrombosis, Thromb. Res. 77: 1.PubMedCrossRefGoogle Scholar
  6. Esmon, C. T., 1989, The roles of protein C and thrombomodulin in the regulation of blood coagulation, J. Biol. Chem. 264: 4743.PubMedGoogle Scholar
  7. Femlund, P., and Stenflo, J., 1982, Amino acid sequence of the light chain of bovine protein C, J. BioL Chem. 257: 1 2170.Google Scholar
  8. Foster, D. C., and Davie, E. W., 1984, Characterization of a cDNA coding for human protein C, P. Natl Acad. Sci. USA 81: 4766.CrossRefGoogle Scholar
  9. Foster, D. J., Yoshitake, S., and Davie, E. W., 1985, The nucleotide sequence of the gene for human protein C, P. Nall Acad. Sci. USA 82: 4673.CrossRefGoogle Scholar
  10. Hagen, F. S., Gray, C. L., and O’Hara, P., 1986, Characterization of a cDNA coding for human factor VII, P. Natl Acad. Sci. USA 83: 2412.CrossRefGoogle Scholar
  11. Hejrup, P., Jensen, M. S., and Petersen, T. E., 1985, Amino acid sequence of bovine protein Z; a vitamin K-dependent serine protease homology, FEBS Letters 184: 333.CrossRefGoogle Scholar
  12. Kisiel, W., 1979, Human plasma protein C: Isolation, characterization, and mechanisms of activation by a-thrombin., J. Clin. Invest. 64: 761.PubMedCrossRefGoogle Scholar
  13. Leytus, S. P., Foster, D. C., Kurachi, K., and Davie, E. W., 1986, Gene for human factor X: A blood coagulation factor whose gene organization is essentially identical to that of factor IX and protein C, Biochemistry 25:5098.Google Scholar
  14. Long, G. L., Belagaje, R. M., and MacGillivray, T. A., 1984, Cloning and sequencing of liver cDNA coding for bovine protein C, P. Nail Acad. Sci. USA 81: 5653.CrossRefGoogle Scholar
  15. Lundwall, A., Dackowski, W., Cohen, E., Shaffer, M., Mahr, A., Dahlback, B., Stenflo, J., and Wydro, R., 1986, Isolation and sequence of cDNA for human protein S, a regulator of blood coagulation, P. Natl Acad. Sci. USA 83: 6716.CrossRefGoogle Scholar
  16. Magnusson, S., Petersen, T. E., Sottrup-Jensen, L., and Claeys, H., 1975, Complete primary structure of prothrombin: isolation, structure and reactivity of ten carboxylated glutamic acid residues and regulation of prothrombin activation by thrombin, in: Proteases and biological control, E. Reich, D. B. Rifkin, E. Shaw, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, pp. 123–149.Google Scholar
  17. Medved, L. V., Orthner, C. L., Lubon, H., Lee, T. K., and Drohan, W. N., 1995, Thermal stability and domain-domain interactions in natural and recombinant protein C, J. Biol. Chem. 270:13659.Google Scholar
  18. Nandakumar, R., and Afshari, H., 2002, Isotherm experiments in the laboratory.Google Scholar
  19. Orthner, C. L., Madurawe, R. D., Velander, W. H., Drohan, W. N., Bettey, F. D., and Strickland, D. K., 1989, Conformational changes in an epitope localized to the NH2-terminal region of protein C, J. Biol. Chem. 264: 18781.PubMedGoogle Scholar
  20. Porath, J., Carlsson, J., Olsson, I., and Betfrage, G., 1975, Metal chelate affinity chromatography, a new approach to protein fractionation, Nature 258: 598.PubMedCrossRefGoogle Scholar
  21. Porath, J., and Olin, B., 1983, Immobilized metal ion affinity adsorption and metal ion affinity chromatography of biomaterials: serum protein affinities.for gel-immobilized iron and nickel ions, Biochemistry 22: 1621.PubMedCrossRefGoogle Scholar
  22. Rezaie, A. R., and Esmon, C. T., 1995, Tryptophans 231 and 234 in protein C report the Cat’-dependent conformational change required for activation by the thrombin-thrombomodulin complex, Biochemistry 34: 1 2221.Google Scholar
  23. Shen, L., 1999, Anticoagulant protein C (structural and functional studies), Thesis, Department of Clinical Chemistry, Lund University.Google Scholar
  24. Stenflo, J., and Femlund, P., 1982, Amino acid sequence of the heavy chain of bovine protein C, J. Biol. Chem. 257: 1 2180.Google Scholar
  25. Tharakan, J., Strickla, D., Burgess, W., Drohan, W. N., and Clark, D. B., 1990, Development of an immunoaffmity process for factor-IX purification, Vox Sang. 58: 21.PubMedCrossRefGoogle Scholar
  26. Velander, W. H., Morcol, T., Clark, D. B., Gee, D., and Drohan, W. N., Technological challenges for large-scale purification of protein C in protein C and related anticoagulants, in Protein C and Related Anticoagulants: Advances in Applied Biotechnology Series, D. F. Bruley, and W. N. Drohan, ed., Gulf Publishing Company, Houston, pp. 11–28.Google Scholar
  27. Wang, Y., Geer, L.Y., Chappey, C., Kans, J.A., Bryant, S.H., 2000, Cn3D: sequence and structure views for Entrez, Trends Biochem. Sci. 6: 300.CrossRefGoogle Scholar
  28. Wong, J. W., Albright, R. L., and Wang, N. H., 1991, Immobilized metal ion affinity chromatography (IMAC) chemistry and bioseparations applications, Separ. Purif. Method 20: 49.CrossRefGoogle Scholar
  29. Wu, H., 2000, Protein C separation from homologous human blood proteins, Cohn fraction IV-1, using immobilized metal affinity chromatography, Ph.D. Dissertation, Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County.Google Scholar
  30. Wu, H., and Bruley, D. F., 1999, Homologous human blood protein separation using immobilized metal affinity chromatography: protein C separation from prothrombin with application to the separation of factor IX and prothrombin, Biotechnol. Progr. 15: 928.CrossRefGoogle Scholar
  31. Yip, T.-T., and Hutchens, T. W., 1994, Immobilized metal ion affinity chromatography, Mol. Biotechnol. 1:151. Yoshitake, S., Schach, B. G., Foster, D. C., Davie, E. W., and Kurachi, K., 1985, Nucleotide sequence of the gene for human factor IX (antihemophilic factor B), Biochemistry 24: 3736.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • E. Eileen Thiessen
    • 1
  • Duane F. Bruley
    • 2
  1. 1.Baltimore City Public School SystemBaltimore City CollegeBaltimoreUSA
  2. 2.College of EngineeringUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations