Acute Respiratory Distress Syndrome in Patients after Blunt Thoracic Trauma: The Influence of Hyperbaric Oxygen Therapy

  • Gennady G. Rogatsky
  • Edward G. Shifrin
  • Avraham Mayevsky
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 540)

Abstract

The rate of mortality from acute respiratory distress syndrome (ARDS) has reportedly reached as high as 50–75%.1−3 The risk of ARDS development increases after severe blunt thoracic trauma (BTT) because of a higher likelihood for lung contusion4 and acute depression of cardiac function.5, 6 Monitoring of oxygen transport in patients with ARDS has shown that oxygen delivery and consumption were significantly higher in the survivors compared to nonsurvivors.7 This suggests that maintenance of oxygen delivery at optimal levels can potentially enable the reversal of ARDS.8 In cases of severe BTT, these oxygen transport variables may be induced by early cardiorespiratory dysfunction6, 9 which requires inotropic support.6, 8, 10 On the strength of these data, it is reasonable to conclude that the prevention and correction of oxygen deficiency are basic to intensive care during ARDS.

Keywords

Placebo Depression Lactate Neurol Stein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Villar and A. S. Slutsky, The incidence of the adult respiratory distress syndrome, Am. Rev. Respir. Dis. 140, 814–816 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    P. Krafft, P. Fridrich, T. Pemerstorfer, R. D. Fitzgerald, D. Koc, B. Schneider, A. F. Hammerle, and H. Steltzer, The acute respiratory distress syndrome: definitions, severity and clinical outcome. An analysis of 101 clinical investigations, Intensive Care Med. 22, 519–529 (1996).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Matejovic, I. Novak, V. Sramek, R. Rokyta, P. Hora, and M. Nalos, Acute respiratory distress syndrome, Cas. Lek Cesk 138, 262–267 (1999).PubMedGoogle Scholar
  4. 4.
    A. D. Boyd and L. R. Glassman, Trauma to the lung, Chest Surg. Clin. N. Am. 7, 263–284 (1997).PubMedGoogle Scholar
  5. 5.
    G. G. Rogatskii, Interrelation of cardiodynamics and pulmonary gas exchange in an experimental model of the acute respiratory failure syndrome, Biull. Ekrp. Biol. Med. 98, 273–275 (1984) (Russian).Google Scholar
  6. 6.
    M. Y. Rady, J. D. Edwards, and P. Nightingale, Early cardiorespiratory findings after severe blunt thoracic trauma and their relation to outcome, Br. J. Surg. 79, 65–68 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    J. A. Russell, J. J. Ronco, D. Lockhat, A. Belzberg, M. Kiess, and P. M. Dodek, Oxygen delivery and consumption and ventricular preload are greater in survivors than in nonsurvivors of the adult respiratory distress syndrome, Am. Rev. Respir. Dis. 141, 659–665 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    H. G. Cryer, J. D. Richardson, S. Longmire-Cook, and C. M. Brown, Oxygen delivery in patients with adult respiratory distress syndrome who undergo surgery. Correlation with multiple-system organ failure, Arch. Surg. 124, 1378–1385 (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    M. C. McCarthy, A. L. Cline, G. W. Lemmon, and J. B. Peoples, Pressure control inverse ratio ventilation in the treatment of adult respiratory distress syndrome in patients with blunt chest trauma, Am. Surg. 65, 1027–1030 (1999).PubMedGoogle Scholar
  10. 10.
    J. F. Dhainaut and F. Brunet, Right ventricular performance in adult respiratory distress syndrome, Eur. Respir. J. Suppl. 11, 490s - 495s (1990).PubMedGoogle Scholar
  11. 11.
    C. S. Ray, B. Green, and P. Cianci, Hyperbaric oxygen therapy in bum patients with adult respiratory distress syndrome, Undersea Biomed. Res. 16 (Suppl.), 81 (1989).Google Scholar
  12. 12.
    E. G. Damon and R. K. Jones, Hyperbaric medicine in the treatment of thoracic trauma, Physiologist 14, 127 (1971).Google Scholar
  13. 13.
    G. G. Rogatskii, M. B. Vainshtein, and T. V. Sevost’ianova, Use of hyperbaric oxygenation to correct an acute experimental respiratory insufficiency syndrome, Biull. Eksp. Biol. Med. 105, 410411 (1988) (Russian).Google Scholar
  14. 14.
    W. G. Kubicek, J. Kottke, M. U. Ramos, R. P. Patterson, D. A. Witsoe, J. W. Labree, W. Remole, T. E. Layman, H. Schoening, and J. T. Garamela, The Minnesota impedance cardiograph-theory and applications, Biomed. Eng. 9, 410–416 (1974).PubMedGoogle Scholar
  15. 15.
    W. C. Shoemaker, C. C. Wo, M. H. Bishop, P. L. Appel, J. M. Van de Water, G. R. Harrington, X. Wang, and R. S. Patil, Multicenter trial of a new thoracic electrical bioimpedance device for cardiac output estimation, Crit. Care Med. 22, 1907–1912 (1994).PubMedGoogle Scholar
  16. 16.
    C. C. J. Wo, W. C. Shoemaker, M. H. Bishop, W. Xiang, R. S. Patil, and D. Thangathurai, Noninvasive estimations of cardiac output and circulatory dynamics in critically ill patients, Curr. Opin. Critic. Care 1, 211–218 (1995).CrossRefGoogle Scholar
  17. M. H. Bishop, J. Jorgens, W. C. Shoemaker, P. L. Appel, A. Fleming, D. Williams, G. Jackson, C. J. Wo, L. Babb, and T. Manning, et al.,The relationship between ARDS, pulmonary infiltration, fluid balance, and hemodynamics in critically ill surgical patients, Am. Surg. 57, 785–792 (1991).Google Scholar
  18. 18.
    S. Jepsen, P. Herlevsen, P. Knudsen, M. I. Bud, and N. O. Klausen, Antioxidant treatment with Nacetylcysteine during adult respiratory distress syndrome: a prospective, randomized, placebo-controlled study, Crit. Care Med. 20, 918–923 (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    K. S. Johnson, M. H. Bishop, C. M. 2. Stephen, J. Jorgens, W. C. Shoemaker, S. K. Shori, G. Ordog, H. Thadepalli, P. L. Appel, and H. B. Kram, Temporal patterns of radiographic infiltration in severely traumatized patients with and without adult respiratory distress syndrome, J. Trauma 36, 644–650 (1994).Google Scholar
  20. 20.
    J. L. Vincent, Is ARDS usually associated with right ventricular dysfunction or failure?, Intensive Care Med. 21, 195–196 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    W. E. Hurford and W. M. Zapol, The right ventricle and critical illness: a review of anatomy, physiology, and clinical evaluation of its function, Intensive Care Med. 14 (Suppl. 2), 448–457 (1988).PubMedGoogle Scholar
  22. I. Boerema, N. G. Meyne, W. K. Brummelkamp, S. Bouma, M. H. Mensch, F. Kammerurans, et al.,Life without blood: a study of the influence of high atmospheric pressure and hypothermia on dilution of blood, Cardiovasc. Surg. 1, 133–146 (1960).Google Scholar
  23. 23.
    P. B. James, Postoperative hypoxia: an indication for intermittent hyperbaric oxygen?, Lancet 340, 1046 (1992).PubMedCrossRefGoogle Scholar
  24. 24.
    R. A. Neubauer and P. James, Cerebral oxygenation and the recoverable brain, Neurol. Res. 20 (Suppl. 1), S33 - S36 (1998).PubMedGoogle Scholar
  25. 25.
    R. O. Hopkins, L. K. Weaver, D. Pope, J. F. Orme, E. D. Bigler, and V. Larson-Lohr, Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome, Am. J. Respir. Crit. Care Med. 160, 50–56 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Moss and A. A. Stein, The centrineurogenic etiology of the respiratory distress syndrome, Am. J. Surg. 132, 352–357 (1976).PubMedCrossRefGoogle Scholar
  27. 27.
    G. G. Oliveira and M. P. Antonio, Role of the central nervous system in the adult respiratory distress syndrome, Crut. Care Med. 15, 844–849 (1987).CrossRefGoogle Scholar
  28. 28.
    S. B. Rockswold, G. L. Rockswold, J. M. Vargo, C. A. Erickson, R. L. Sutton, T. A. Bergman, and M. H. Biros, Effects of hyperbaric oxygenation therapy on cerebral metabolism and intracranial pressure in severely brain injured patients, J. Neurosurg. 94, 403–411 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    E. Braunwald, J. Ross, and E. H. Sonnenblick, Mechanisms of Contraction of the Normal and Failing Heart (Little, Brown and Company, Boston, 1967 ).Google Scholar
  30. 30.
    K. R. Walley, C. J. Becker, R. A. Hogan, K. Teplinsky, and L. D. Wood, Progressive hypoxemia limits left ventricular oxygen consumption and contractility, Circ. Res. 63, 849–859 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    P. C. Swift, J. H. Turner, H. F. Oxer, J. P. O’Shea, G. K. Lane, and K. V. Woollard, Myocardial hibernation identified by hyperbaric oxygen treatment and echocardiography in postinfarction patients: comparison with exercise thallium scintigraphy, Am. Heart J. 124, 1151–1158 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    L. E. Stuhr, G. W. Bergo, and I. Tyssebotn, Systemic hemodynamics during hyperbaric oxygen exposure in rats, Aviat. Space Environ. Med. 65, 531–538 (1994).PubMedGoogle Scholar
  33. 33.
    C. Her, A. Kosse, and D. E. Lees, Elevated pulmonary artery systolic storage volume associated with improved ventilation-to-perfusion ratios in acute respiratory failure, Chest 102, 560–567 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Gennady G. Rogatsky
    • 1
  • Edward G. Shifrin
    • 2
  • Avraham Mayevsky
    • 1
  1. 1.Faculty of Life SciencesBar-Ilan UniversityRamat-GanIsrael
  2. 2.Department of Vascular Surgery, Sourasky Medical Center, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations