Comparison of the Influence of Xenon VS. Isoflurane on Ventilation-Perfusion Relationships in Patients Undergoing Simultaneous Aortocaval Occlusion

  • Jan Hofland
  • Robert Tenbrinck
  • Alexander M. M. Eggermont
  • Wilhelm Erdmann
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 540)


In vitro, isoflurane is known to inhibit hypoxic pulmonary vasoconstriction (HPV) with a concomitant increase of intrapulmonary shunt (IPS) and subsequent impairment of PaO2.1−3 Data from in vivo studies are conflicting. IPS fractions are found to be unchanged,4 decreased,5 non-significant small increased,6 and significant threefold increased.7 None of these studies reported impairment of PaO2. Changes in cardiac output (CO) can be the reason for these conflicting results.8 Solares and colleagues found a direct relationship between IPS and CO during balanced anaesthesia with isoflurane.9


Mean Arterial Pressure Isoflurane Anaesthesia Hypoxic Pulmonary Vasoconstriction Sick Sinus Syndrome Intrapulmonary Shunt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Mathers, J. L. Benumof, and E. A. Wahrenbrock, General anesthetics and regional hypoxic pulmonary vasoconstriction, Anesthesiology 46, 111–114 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    K. B. Domino, L. Borowec, C. M. Alexander, et al, Influence of isoflurane on hypoxic pulmonary vasoconstriction in dogs, Anesthesiology 64, 423–429 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Groh, G. E. Kuhne, L. Ney, A. Sckell, and A. E. Goetz, Effects of isoflurane on regional pulmonary blood flow during one-lung ventilation, BrJAnaesth 74, 209–216 (1995).Google Scholar
  4. 4.
    J. F. Nicholas, and A. M. Lam, Isoflurane-induced hypotension does not cause impairement in pulmonary gas exchange, Can Anaesth Soc J31, 352–358 (1984).CrossRefGoogle Scholar
  5. 5.
    K. Schwarzkopf, T. Schreiber, R. Bauer, et al, The effects of increasing concentrations of isoflurane and desflurane on pulmonary perfusion and systemic oxygenation during one-lung ventilation in pigs, Anesth Analg 93, 1434–1438 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    A. J. Carlsson, L. Bindslev, and G. Hedenstiema, Hypoxia-induced pulmonary vasoconstriction in the human lung. The effect of isoflurane anesthesia, Anesthesiology 66, 312–316 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    N. H. Kellow, A. D. Scott, S. A. White, and R. O. Feneck, Comparison of the effects of propofol and isoflurane anaesthesia on right ventricular function and shunt fraction during thoracic surgery, Br J Anaesth 75, 578–582 (1995).PubMedCrossRefGoogle Scholar
  8. 8.
    C. D. Spies, Response to searching the preferred anesthetic technique during one-lung-ventilation, Anesth Analg 94, 1041–1042 (2002).CrossRefGoogle Scholar
  9. 9.
    G. Solares, and C. Qualls, Effect of changes in cardiac output on oxygenation and intrapulmonary short circuit (Qs/Qt) under inhalation anesthesia, Rev Esp Anestesiol Reanim 41, 200–204 (1994).PubMedGoogle Scholar
  10. 10.
    C. Lynch III, J. Baum, and R. Tenbrinck, Xenon anesthesia. Anesthesiology 92, 865–870 (2000).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Tenbrinck, M. Reyle Hahn, I. Gültuna, et al, The first clinical experiences with xenon, Int Anesthesiol Clin 39, 29–42 (2001).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Hofland, R. Tenbrinck, M. G. A. van Liken, C. H. J. van Eijck, A. M. M. Eggermont, and W. Erdmann, Cardiovascular effects of simultaneous occlusion of the inferior vena cava and aorta in patients treated with hypoxic abdominal perfusion for chemotherapy. Br J Anaesth 88, 193–198 (2002).PubMedCrossRefGoogle Scholar
  13. 13.
    W. C. Shoemaker, and M. H. Parsa, Invasive and noninvasive physiologic monitoring. in: Textbook of critical care, edited by W. C. Shoemaker, S. M. Ayres, A. Grenvik, and P. R. Holbrook ( W.B. Saunders comp, Philadelphia, 1995 ), pp. 252–266.Google Scholar
  14. 14.
    J. F. Nunn, Oxygen, in: Nunn’s applied respiratory physiology, edited by J. F. Nunn ( Butterworth-Heinemann, Oxford, 1995 ), pp. 247–305.Google Scholar
  15. 15.
    R. Naeije, P. Lejeune, M. Leeman, C. Melot, and T. Deloof, Pulmonary arterial pressure-flow plots in dogs: effects of isoflurane and nitroprusside, JAppl Physiol 63, 969–977 (1987).Google Scholar
  16. 16.
    S. Gregoretti, S. Gelman, T. Henderson, and E. L. Bradley, Hemodynamics and oxygen uptake below and above aortic occlusion during crossclamping of the thoracic aorta and sodium nitroprusside infusion, J Thorac Cardiovasc Surg 100, 830–836 (1990).PubMedGoogle Scholar
  17. 17.
    S. Gelman, H. McDowell, P. D. Varner, et al, The reason for cardiac output reduction after aortic cross-clamping, Am JSurg 155, 578–586 (1988).CrossRefGoogle Scholar
  18. 18.
    M. Schmidt, C. Papp–Jambor, T. Marx, U. Schirmer, and H. Reinelt, Effect of 70% xenon anaesthesia on pulmonary artery pressure, Appl Cardiopulm Pathophysiol 9, 112–113 (2000).Google Scholar
  19. 19.
    S. Gelman, The pathophysiology of aortic cross-clamping and unclamping, Anesthesiology 82, 1026–1060 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jan Hofland
    • 2
  • Robert Tenbrinck
  • Alexander M. M. Eggermont
  • Wilhelm Erdmann
    • 1
  1. 1.Department of Anaesthesiology (J. H., R. T., and W. E.) and Surgical Oncology (A. M. M. E)Erasmus Medical Centre RotterdamRotterdamThe Netherlands
  2. 2.Department of Intensive Care MedicineOnze Lieve Vrouwe GasthuisAmsterdamThe Netherlands

Personalised recommendations