Tidally Deposited Bands in Shells of Barnacles and Molluscs

  • Dennis John Crisp


At its normal pH of 8.3, sea water is virtually saturated with calcium carbonate (Revelle and Fleming, 1934; Wattenberg and Timmermann, 1936). Little energy is therefore needed to form skeletons of calcite or aragonite. Almost all of the invertebrate phyla and a number of marine plants have evolved skeletons of calcium carbonate. Vertebrates have acquired calcium phosphate skeletons. However, calcareous skeletons are not always laid down continuously and uniformly, despite the ubiquity of calcium and the relevant anions in the surrounding seawater. Yearly growth interruptions, ascribed to annual temperature changes or other climatic variables, have long been observed and understood (Orton, 1923).


Growth Line Shell Growth Daily Growth Growth Band Growth Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANTOINE, L. and QUEMERAIS-PENCREAC’H, D., 1980. Stries et rythmes de croissance chez la Patella vulgata L. Cr. hebd. Seanc. Acad. Sci. Paris D 290: 1127–1130.Google Scholar
  2. BARNES, D.J., 1972. The structure and formation of growth ridges in scleractinian coral skeletons. Proc. Roy. Soc. Lond. B 182: 331–350.CrossRefGoogle Scholar
  3. BEAMISH, R.J. and MCFARLANE, G.A., 1983. The forgotten requirement for age validation in fisheries biology. Trans. Amer. Fisheries Soc., 112: 735–743.CrossRefGoogle Scholar
  4. BERRY, W.B.N. and BARKER, R.M., 1975. Growth increments in fossil and modern bivalves. In Growth rhythms and the history of the earth’s rotation. Rosenberg, G.D. and Runcorn, S.K.(Ed.) John Wiley and Sons pp. 9–25.Google Scholar
  5. BOURGET, E. and CRISP, D.J., 1975a. Factors affecting deposition of the shell in Balanus balanoides. J. mar. Biol. Ass. U.K., 55: 231–249.CrossRefGoogle Scholar
  6. BOURGET, E. and CRISP, D.J., 1975b. An analysis of the growth bands and ridges of barnacle shell plates. J. mar. Biol. Ass. U.K., 55: 439–461.CrossRefGoogle Scholar
  7. BROOM, M.J. and MASON, J., 1978. Growth and spawning in the pectinid Chlamys opercularis in relation to temperature and phytoplankton concentration. Marine Biology, 47: 277–285.CrossRefGoogle Scholar
  8. BROTHERS, E.B., 1978. Exogenous factors and the formation of daily and subdaily growth increments in fish otoliths. Amer. Zool., 18: 631.Google Scholar
  9. BROTHERS, E.B., MATTHEWS, C.P. and LASKER, R. 1976. Daily growth increments in otoliths from larval and adult fishes. Fish. Bull., 74: 1–8.Google Scholar
  10. BUDDEMEIER, R.W. and KINZIE III, R.A., 1975. The chronometric reliability of contemporary corals. In Rosenberg, G.D. and Runcorn, S.K. (Ed.) Growth rhythms and the history of the Earth’s rotation. John Wiley and Sons., pp. 135–148Google Scholar
  11. CAMPANA, S.E. and NEILSON, J.D., 1982. Daily growth increments in otoliths of starry flounder Platichthysstellatus and the influence of some environmental variables on their production. Can. J. Fish. Aquat. Sci., 39: 937–942.CrossRefGoogle Scholar
  12. CHOE, S. 1963. Daily age markings on the shell of cuttle fishes. Nature, Lond. 197: 306–307CrossRefGoogle Scholar
  13. CLARKE, G.R. II, 1968. Mollusk shell: Daily growth lines. Science, 161: 800–802.CrossRefGoogle Scholar
  14. CLARKE, G.R. II, 1975. Periodic growth and biological rhythms on experimentally grown bivalves. In Growth Rhythms and the history of the Earth’s rotation. Ed. Rosenberg, D. and Runcorn, S.K. (Ed.) John Wiley and Sons., pp. 103–117.Google Scholar
  15. CRENSHAW, M.A. and NEFF, J.M., 1969. Decalcification at the mantle-shell interface in molluscs. Amer. Zool., 9: 881–885.Google Scholar
  16. CRISP, D.J. and RICHARDSON, C.A., 1975. Tidally produced internal bands in the shells of Elminius modes-tus Darwin. Mar. Biol., 33: 155–160.Google Scholar
  17. DARWIN, C., 1854. A monograph of the subclass Cirripedia. II The Balanidae, the Verrucidae etc. Ray Soc. London, 684 pp.Google Scholar
  18. DAVENPORT, C.B., 1935. Growth lines in fossil pectens as indicators of past climates. J. Palaeont. 12: 514–515.Google Scholar
  19. DEITH, M.R., 1985. The composition of tidally deposited growth lines in the shell of the edible cockle Cerastoderma edule. J. mar. Biol. Ass. U.K., 65: 573–581.CrossRefGoogle Scholar
  20. DOLMAN, J., 1975. A technique for the extraction of environmental and geophysical information from growth records in invertebrates and stromatolites. In Growth rhythms and the history of the Earth’s rotation. Rosenberg, G.D. and Runcorn, S.K. (Eds) John Wiley and Sons, pp. 191–221.Google Scholar
  21. DUGAL, L.P., 1939. The use of calcareous shell to buffer the product of anaerobic glycolysis in Venusmercenaria. Cellul. Comp. Physiol., 13: 235–251.CrossRefGoogle Scholar
  22. EKARATNE, S.U.K. and CRISP, D.J., 1982. Seasonal growth studies of intertidal gastropods from shell microgrowth band measurements, including a comparison with alternative methods. J. mar. Biol. Ass. U.K., 64: 183–210.CrossRefGoogle Scholar
  23. ESSIG, R.J. and COLE, C.F., 1986. Methods of estimating larval fish mortality from daily increments in otoliths. Trans. Amer. Fish. Soc., 115: 34–40.CrossRefGoogle Scholar
  24. EVANS, J.W., 1972. Tidal growth increments in Clinocardiun: nuttalli. Science, N.Y. 176: 416–417.CrossRefGoogle Scholar
  25. EVANS, J.W., 1975. Growth micromorphology of two bivalves exhibiting non-daily growth lines. In Growth rhythms and the history of the Earth’s rotation (Ed. Rosenberg, G.D. and Runcorn, S.K. ( Eds.) John Wiley and Sons, pp. 119–134.Google Scholar
  26. EVANS, J.W. and LE MESURIER, M.H., 1972. Functional micromorphology and circadian growth of the rock boring clam Penitella penita. Can. J. Zool., 50: 1251–1258.CrossRefGoogle Scholar
  27. FARROW, G.E., 1971. Periodicity structures in the bivalve shell: experiments to establish growth controls in Cerastoderma edule from the Thames estuary. Palaeontology 14: 571–588.Google Scholar
  28. GEBELEIN, C.D. and HOFFMAN, P., 1968. Intertidal stromatolites from Cape Sable Florida. Geol. Soc. Am. Spec. Pap., 121: 109.Google Scholar
  29. GERSIENKORN, H., 1969. The earliest past of the Earth Moon system. Icarus 11: 189–207.CrossRefGoogle Scholar
  30. GRUFFYDD, LL.D., 1981. Observations on the rate of production of external ridges on the shell of Pecten maximus in the laboratory. J. mar. Biol. Ass. U.K., 61: 401–411.CrossRefGoogle Scholar
  31. HALL, C.A., DOLLASE, W.A. and CORBATO, C.E., 1974. Shell growth in Tivela stultorum (Maure, 1823) and Callista chione (Linnaeus, 1758 ) (Bivalvia): Annual periodicity, latitudinal differences and diminution with age. Palaeogr. Palaeoclim. Palaeoecol., 15: 33–61.CrossRefGoogle Scholar
  32. HARDIE, L.A. and GINSBERG, RN., 1971. The sedimentary record of a tidal flat lamination. Geol. Soc. Am. Abst. Prog., 3: 591.Google Scholar
  33. HOUSE, M.R. and FARROW, G.E., 1968. Daily growth banding in the shell of the cockle, Cardium edule. Nature, 219: 1384–1386.PubMedCrossRefGoogle Scholar
  34. JONES, P. and CRISP, M., 1985. Microgrowth bands in chitons: evidence of tidal periodicity. J. mollusc. Studies, 51: 133–137.Google Scholar
  35. KENNY, R., 1977. Growth studies of the tropical intertidal limpet Acmaea antillarum. Marine Biology, 39: 161–170.CrossRefGoogle Scholar
  36. KOIKE, H., 1973. Daily growth lines of the clam Meretrix lusoria - a basic study for the estimation of prehistoric seasonal gathering. J. Antrop. Soc. Nippon, 81: 122–138.CrossRefGoogle Scholar
  37. KOIKE, H., 1975. The use of daily and annual growth lines of the clam Meretrix lusoria in estimating seasons of Jornon Penrod shell gathering. Bull. R. Soc. N.Z., 18: 189–193.Google Scholar
  38. KOIKE, H., 1980 Microstructure of the growth increment in the shell of Meretrix lusoria. In The mechanics of biomineralisation in animals and plants. Proceedings of the Third International Biomineralisation Symposium, 1977. ( Omori, M, and Watabe, N., Eds) Tokai University Press, pp. 93–97.Google Scholar
  39. LAMBECK, K., 1980. The Earth’s variable rotation: geophysical causes and consequences. Cambridge University Press xi +449 pp.Google Scholar
  40. LE GALL, M.P., 1970. Méthode d’étude des stries de croissance de Mytilus edulis L. Mise en évidence du rhythme et des modalités de leur formation. C.r. hebd. Seanc. Acad. Sci. Paris D., 270: 590–511.Google Scholar
  41. LUTZ, R.A. and RHOADS, D.C., 1977. Anaerobiosis and a theory of growth line formation. Science, N.Y., 198: 1222–1227.CrossRefGoogle Scholar
  42. MACCLINTOCK, C. and PANNELLA, G., 1969. Time of calcification in the bivalve mollusk M. mercenaria (L.) during the 24 h period. Ann. meeting Geol. Soc. Amer., p140.Google Scholar
  43. MAZZULLO, S.J., 1971. Length of the year during Silurian and Devonian periods: New Values. Geol. Soc. Am. Bull., 82: 1085–1086.CrossRefGoogle Scholar
  44. MOHR, R.E., 1975. Measured Periodicities of the Biwabik (Precambrian) Stromatolites and their geophysical significance. In Growth rhythms and the history of the Earth’s rotation. Rosenberg, G.D. and Runcorn, S.K. (Eds) John Wiley and Sons, pp. 43–56.Google Scholar
  45. MONTY, C.L.V., 1965. Recent algal stromatolites in the Windward lagoon, Andros Island, Bahamas. Ann. Soc. Geol. Belg., 88: 296–376.Google Scholar
  46. MUNK, W.H. and MACDONALD, G.J. 1960. The rotation of the Earth. Cambridge University Press. London and NY, 313 pp.Google Scholar
  47. O’HORA, N.P.J., 1975. The detection of recent changes in the Earth’s rotation. In Growth rhythms and the history of the Earth’s rotation. Rosenberg, G.D. and Runcorn, S.J.(Eds) John Wiley and Sons, 427–444.Google Scholar
  48. ORTON, J.H., 1923. On the significance of “rings” on the shells of Cardium and other molluscs. Nature, London, 112: 10.CrossRefGoogle Scholar
  49. PANNELLA, G., 1971. Fish otoliths: daily growth layers and periodical patterns. Science (Washington D.C.), 173: 1127–1127.CrossRefGoogle Scholar
  50. PANNELLA, G., 1972. Palaeontological evidence on the Earth’s rotational history since early precambrian. Astrophys. Space Sci., 16: 212–237.Google Scholar
  51. PANNELLA, G., 1974. Otolith growth patterns: an aid in age determination in temperate and tropical fishes. In Bagenal, T.B. (Ed.) The aging of fish. Unwin Bros, Surrey, England. pp. 28–29.Google Scholar
  52. PANNELLA, G., 1975. Palaeontological clocks and the history of the Earth’s rotation. In Growth rhythms and the history of the Earth’s rotation. Rosenberg, G.D. and Runcorn, S.K. (Eds) John Wiley and Sons, pp. 253–287.Google Scholar
  53. PANNELLA, G., 1976. Tidal growth patterns in recent and fossil mollusc bivalves: a tool for the reconstruction of Paleotides. Die Naturwissenschaften, 63: 539–543.CrossRefGoogle Scholar
  54. PANNELLA, G. and MACCLINTOCK, C., 1968. Biological and environmental rhythms reflected in moluscan shell growth. J. palaeontol., 42(5) Suppl. 64–80.Google Scholar
  55. PANNELLA, G., MACCLINTOCK, C. and THOMPSON, M.M., 1968. Palaeontologic evidence of variations in length of synodic month since late Cambrian. Science, 162: 792–796.PubMedCrossRefGoogle Scholar
  56. PHILBRICK, F.A. and HOLMYARD, E.J., 1932. A textbook of theoretical and inorganic chemistry. Temple Press, Letchworth., vii - 803 pp.Google Scholar
  57. REVELLE, R. and FLEMING, RH., 1934. The solubility product constant of calcium carbonate in seawater. Proc. Fifth Pacific Cong. Canada, 1933, Vol. 3: 2089–2092.Google Scholar
  58. RHOADS, D.C. and PANNELLA, G., 1970. The use of molluscan shell patterns in ecology and palaeoecology. Lethaia 3: 143–161.CrossRefGoogle Scholar
  59. RICHARDSON, C.A., 1987. Tidal bands in the shell of the clam Tapes philippinarum (Adams and Reeve, 1950 ). Proc. R. Soc. Lond. B. 230: 367–387.CrossRefGoogle Scholar
  60. RICHARDSON, C.A., CRISP, D.J. and RUNHAM, N.W., 1979. Tidally deposited growth bands in the shell of the common cockle, Cerastoderma edulis ( L. ). Malacologia 5: 277–290.Google Scholar
  61. RICHARDSON, C.A., CRISP, D.J., RUNHAM, N.W., and GRUFFYDD, LL..D., 1980a. The use of tidal bands in the shell of Cerastoderma edule to measure seasonal growth rates under cool temperate and sub-arctic conditions. J. mar. Biol. Ass. U.K., 60: 977–990.CrossRefGoogle Scholar
  62. RICHARDSON, C.A., CRISP, D.J. and RUNHAM, N.W., 1980b. An endogenous rhythm in shell deposition in Cerastoderma edule. J. mar. Biol. Ass. U.K., 60: 991–1004.CrossRefGoogle Scholar
  63. RICHARDSON, C.A., CRISP, D.J. and RUNHAM, N.W., 1981. Factors influencing shell deposition during a tidal cycle in the intertidal bivalve, Cerastoderma edule. J. mar. Biol. Ass. U.K., 61: 465–476.CrossRefGoogle Scholar
  64. ROSENBERG, G.D., 1973. Calcium concentration in the bivalve Clione andatella Sowerby. Nature, Lon-don, 244: 155–156.CrossRefGoogle Scholar
  65. ROSENBERG, G.D. and JONES, C.B., 1975. Approaches to chemical periodicities in molluscs and stromatolites. In Rosenberg, G.D. and Runcorn, S.K. (Ed.) Growth rhythms and the history of the Earth’s rotation. John Wiley and Sons, pp. 223–241.Google Scholar
  66. ROSENBERG, G.D. and RUNCORN, S.K., 1975 (Eds.) Growth rhythms and the history of the Earth’s rotation, xvi+559pp. John Wiley and Sons, London, New York, Sydney, Toronto.Google Scholar
  67. SCHMIDT, P.O., 1984. Marking growth increments in otoliths of larval and juvenile fish by immersion in tetracycline to examine the rate of increment formation. US Nat. Fish Services, Fish Bull., 82: 237–242.Google Scholar
  68. SCHMIDT, R.E. and FABRIZIO, M.C., 1980. Daily growth increments on otoliths for aging young of the year largemouth bass from a wild population. Progressive Fish Culturist, 42: 78–80.CrossRefGoogle Scholar
  69. SCRUTTON, C.T., 1965. Periodicity in Devonian coral growth. Palaeontology 7: 552–558.Google Scholar
  70. SCRUTTON, C.T., 1970. Evidence for a monthly periodicity in the growth of some corals. In Palaeogeophysics. (Ed. Runcorn, S.K.) Academic Press, London and New York.Google Scholar
  71. SCRUTTON, C.T., 1978. Periodic growth features in fossil organisms and the length of day and month. In Tidal friction and the Earth’s rotation (Ed. Broche, P. and Sunderland, J.) Springer-Verlag, Berlin, pp. 154–196.CrossRefGoogle Scholar
  72. TAUBERT, B.D. and COBLE, D.W., 1977. Daily increments in otoliths of three species of Lepomis and Tilapia mossambica. J. Res. Board Canada, 332–340.Google Scholar
  73. WAITENBURG, H. and TIMMERMANN, E., 1936. Uber die Sattingung des Seewassers an CaCO3, and die anorganogene Bilding von Kalksedimenten. Ann. d. Hydro. u. Mar. Meteor, 23–31: 1936.Google Scholar
  74. WELLS, J.W., 1963. Coral growth and geochronometry. Nature, Lond,. 197: 948–950.CrossRefGoogle Scholar
  75. WELLS, J.W., 1970. Problems of annual and daily growth rings in corals. Photogrammetry. U.S. Coast and Geodetic Survey, Washington.Google Scholar
  76. WHYTE, M.A., 1975. Time, tide and the cockle. In Rosenberg, G.D. and Runcorn, S.K. (Eds) Growth rhythms and the history of the Earth’s rotation. John Wiley and Sons, pp. 177–189.Google Scholar
  77. WILBUR, K.M., 1972. Shell formation in molluscs. In Chemical Zoology Vol. 7Mo11usca ( Florkin, M. and Scheer, B.T. Eds.) Academic Press, N.Y., pp. 103–145.Google Scholar
  78. WILD, A., and FORMAN, T.J., 1980. The relationship between otolith increments and time for Yellow fin and Skipjack Tuna marked with tetracycline. Inter America Tropical Tuna Commission, La Jolla, Ca. USA, Bull. 17: 509–560.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Dennis John Crisp
    • 1
  1. 1.Marine Science LaboratoriesAnimal Biology GroupMenai Bridge, GwyneddUK

Personalised recommendations