Advertisement

Abstract

Biological calcification, silicification, and the precipitation of transition metal oxides appear to have much in common. Three features are discussed: the role of the boundary membrane, ATP driven electroneutral transport of cations to the mineralization site, and passive electroneutral concentration of anions. Ion concentrations at the site of CaCO3 and Ca5OH(PO4)3 precipitation are modeled, and some relationships between mineralization and cytosolic chemistry and evolution are explored.

Keywords

Fluid Transport Boundary Membrane Alkaline Side Coplasmic Reticulum Radular Tooth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALVAREZ, R. and SPARKS, D.L., 1985. Polymerization of silicate anions at low concentrations. Nature, 318: 649–651.CrossRefGoogle Scholar
  2. BARNARD, L.A., MACINTYRE, I.G., and PIERCE, J. W., 1974. Possible environmental index in tropical reef corals. Nature, 252: 219–220.CrossRefGoogle Scholar
  3. BARR, R., TROXEL, K.S., and CRANE, F. L., 1982. Calmodulin antagonists inhibit electron transport in photosystem II of spinach chloroplasts. Biochem. Biophys. Res. Comm., 104: 1182–1188.PubMedCrossRefGoogle Scholar
  4. BAUER, C., GROS, G., and BARTELS, H., (eds.), 1980. Biophysics and Physiology of Carbon Dioxide. 458pp. Berlin: Springer-Verlag.Google Scholar
  5. BECKER, D. W.and BRAND,ZT J., 1985. Anacystis nidulans demonstrates a photosystem II cation require-ment satisfied only by Ca + or Na+. Plant Physiology, 79: 552–558.CrossRefGoogle Scholar
  6. BERG, J.M., 1986. Potential metal-binding domains in nucleic acid binding proteins. Science, 232: 485–487.PubMedCrossRefGoogle Scholar
  7. BOROWITZKA, M.A., 1977. Algal calcification. Oceanogr. Mar. Biol. Ann. Rev., 15: 189–223.Google Scholar
  8. BOROWITZKA, M.A. and LARKUM, A. W.D., 1976. Calcification in the green alga Halimeda II. J. Exp. Bot., 27: 864–878.CrossRefGoogle Scholar
  9. BUDDEMEIER, R.W., SCHNEIDER, R.C., and SMITH, S.V.,1981. The alkaline earth chemistry of corals. Proc. 4th Inter. Coral Reef Sym., Manilla, 2: 81–86.Google Scholar
  10. BURTON, E.A. and WALTER, L.M., 1987. Relative precipitation rates of aragonite and Mg calcite from seawater: temperature and carbonate ion control. Geology, 15: 111–114.CrossRefGoogle Scholar
  11. BYGRAVE, F.L., 1977. Mitochondrial calcium transport. Curr. Top. Bioenergetics, 6: 259–318.Google Scholar
  12. CAMERON, J.N. and WOOD, C.M., 1985. Apparent H+ excretion and CO2 dynamics accompanying carapace mineralization in the blue crab (Callinectes sapidus) following moulting. J. Exp. Biol., 114: 181–196.Google Scholar
  13. CAMPBELL, A.K, 1983. Intracellular calcium: its universal role as regulator. 556 pp. New York: Wiley.Google Scholar
  14. CARAFOLI, E., INESI, G., and ROSEN, B.P., 1984. Calcium transport across biological membranes. hi Metal Ions in Biological Systems. (ed. H. Sigel), pp. 129–186. New York: Marcel Dekker.Google Scholar
  15. CARLISLE, E.M., 1981. Silicon in bone formation. In Silicon and Siliceo E. Volcani), pp. 69–94. New York: Springer-Verlag.Google Scholar
  16. CARLISLE, E.M., 1986. Silicon as an essential trace element in animal nutrition. In Silicon Biochemistry (ed. D. Evered and M. O’Connor ), pp. 123–135. Chichester: John Wiley and Sons.Google Scholar
  17. COSTER, H.G.L., CHILCOTT,T.C., and OGATA, K., 1985. Fluctuations in the electrical properties of Chara and the spatial structure of the electro-chemical characteristics. In Inorganic Carbon Uptake by Aquatic Photosynthetic Organsism (ed. W. J. Lucas and J. A. Berry ), pp. 255–269. Rockville: Amer. Soc. Plant Physiol.Google Scholar
  18. COTY, WA. and MCCONKEY C., Jr., 1982. A high-affinity calcium stimulated ATPase activity in the hen oviduct shell gland. Arch. Biochim. Biophys., 219: 444.CrossRefGoogle Scholar
  19. COTY, WA. and PEDERSEN, P.L., 1975. Phosphate transport in rat liver mitochondria. Kinetics, inhibitor sensitivity, energy requirements, and labelled components. Molec. Cellu. Biochem., 9: 109–124.CrossRefGoogle Scholar
  20. DOOLITTLE, R.F., JOHNSON, M.S., HUSAIN, I., VAN HOUTEN, B., THOMAS, D.C., and SANCAR, A., 1986. Domainal evolution of a prokaryotic DNA repair protein and its relationship to activetansport proteins. Nature, 323: 451–453.PubMedCrossRefGoogle Scholar
  21. DUGUAY, L.E. and TAYLOR, D.L., 1978. Primary production and calcification by the soritid foraminifer Archais angulatus (Finchtel and Moll). J. Protozool., 25: 356–361.Google Scholar
  22. ECKERT, R. and CHAD, J.E., 1984. Inactivation of Ca channels. Prog. Biophys. Molec. Biol., 44: 215–267.CrossRefGoogle Scholar
  23. FERAY, J.-C. and GARAY, R., 1987. A one-to-one Mg2+:Mn2+ exchange in rat erythrocytes. J. Biol. Chem., 262: 5763–5768.PubMedGoogle Scholar
  24. FISKUM, G., 1984. Physiological aspects of mitochondria) calcium regulation. In Metal Ions in Biological Systems v. 17: Calcium and its Role in Biology. (ed. H. Sigel ), pp. 187–214. New York: Marcel Dekker.Google Scholar
  25. FISKUM G. and LEHNINGER, A.L., 1979. Regulated release of Ca2 + from respiring mitochondria by Ca /2H antiport. J. Biol. Chem., 254: 6236–6239.PubMedGoogle Scholar
  26. FISKUM, G., REYNAFARJF B., and LEHNINGER, A. L., 1979. The electric charge stoichiometry of respiration-dependent Ca + uptake by mitochondria. J. Biol. Chem., 254: 6288–6295.PubMedGoogle Scholar
  27. FLATMARK, T. and ROMSLO, I., 1975. Energy dependent accumulation of iron by isolated rat liver mitochondria - requirement for a unidirectional flux of Fe(II) across inner membrane. J. Biol. Chem., 250: 6432.Google Scholar
  28. FORBES, J., 1987. Carbon and oxygen isotopic composition of holocene lake sediments from Okanogan county, Washington. Thesis, University of Washington, Seattle, 103 pp.Google Scholar
  29. FORTES, PA.G., 1977. Anion movements in red blood cells. In Membrane Transport in Red Cells, (ed. J. C. Ellory and V. L. Lew ), pp. 175–195. London: Academic Press.Google Scholar
  30. GEERING, K., 1986. Intracellular ionic changes in cell activation: regulation of DNA, RNA, and protein synthesis. Cur. Top. Membr. Trans., 27: 221–259.CrossRefGoogle Scholar
  31. GIVEN, R.K. and WILKINSON, B.H., 1985. Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates. J. Sed. Petr., 55: 109–119.Google Scholar
  32. GUTKNECHT, J., BISSON, MA., and TOSTESON, F.C., 1977. Diffusion of carbon dioxide through lipid bilayer membranes. Effects of carbonic anhydrase, bicarbonate, and unstirred layers. J. Gen. Physiol., 69: 779–794.PubMedCrossRefGoogle Scholar
  33. GUTKNECHT, J. and WALTER, A., 1982. Anion and proton transport through lipid bilayers and red cell membranes. In Chloride Transport in Biological Membranes (ed. J. A. Zadunaisky ), pp. 91–109. New York: Academic Press.CrossRefGoogle Scholar
  34. HAYNES, D. H. and MANDVENO, A., 1987. Computer modeling of Ca2 + pump function of Ca2+-Mg2+ATPase of Sarcoplasmic Reticulum. Physiol. Rev., 67: 244–284.PubMedGoogle Scholar
  35. HOLLAND, H.D. and SCHIDLOWSKI, M., eds., 1982. Mineral deposits and the evolution of the biosphere. 336 pp. Berlin: Springer-Verlag.Google Scholar
  36. ISA, Y., NORIKATSU, I., and YAMAZATO, K., 1980. Evidence for the occurrence of Ca2+ dependent adenosine triphosphatase in the hermatypic coral Acropora hebes, Dana. Tech. Rep. Sesoko Mar. Sci. Lab. Ryukyu, 7: 19–25.Google Scholar
  37. JENNINGS, M.L., 1978. Characteristics of CO2-independent pH equilibration in human red blood cells. J. Membr. Biol., 40: 365–391.Google Scholar
  38. JOHNSTON, I.S., 1980. The ultrastructure of skeletogenesis in hermatypic corals. Inter. Rev. Cytology, 67: 171–214.CrossRefGoogle Scholar
  39. KAKEI, M. and NAKAHARA, H., 1984. Histochemical localization of carbonic anhydrase activity in epiphyseal growth cartilage and calvaria of the rat. Jap. J. Oral Biol., 26: 554–558.CrossRefGoogle Scholar
  40. KAKEI, M. and NAKAHARA, H., 1985. Electroimmunoblotting study of carbonic anhydrase in developing enamel and dentin of the rat incisor. Jap. J. Oral Biol., 27: 357–361.CrossRefGoogle Scholar
  41. KEARNS, L.P. and SIGEE, D.G., 1980. The occurrence of period IV elements in dinoflagellate chromatin: An X-ray microanalytical study. J. Cell Sci., 46: 113–127.PubMedGoogle Scholar
  42. KINGSLEY, R.J. and N. WATABE, 1985. Ca-ATPase localization and inhibition in the gorgonian Leptogorgia virgulata (Lamarck). J. Exp. Mar. Biol. Ecol., 93: 157–167.CrossRefGoogle Scholar
  43. KISHIMOTO, U., KAMIIKE, N., TAKEUCHI, Y, and OHKAWA, T., 1984. A kinetic analysis of the electrogenic pump of Chara corallina: I. Inhibition of the pump by DCCD. J. Membr. Biol., 80: 175–183.CrossRefGoogle Scholar
  44. KLAVENESS, D., 1976. Emiliania huxleyi (Lohman) Hay and Mohler. 3. Mineral deposition and the origin of the matrix during coccolith formation. Protistologica, 12: 217–224.Google Scholar
  45. LEHNINGER, A.L., REYNAFJE, B., VERCESI, A. and TEW, W. P., 1978. Characteristics of energy-dependent calcium influx and efflux systems in mitochondria. In The Proton and Calcium Pumps. (Ed. G. F. Azzone ), pp. 203–214. Amsterdam: Holland Biomedical Press.Google Scholar
  46. LEHNINGER, A.L., 1983. The possible role of mitochondria and phosphocitrate in biological calcification. In Biomineralization and Biological Metal Accumulation (ed. P. Westbroek and E.W. de Jong ) pp. 107–121. Dordrecht: D. Reidel.CrossRefGoogle Scholar
  47. LOW, I., FRIEDRICH, T., BURCKHARDT, G., 1984. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Amer. J. Physiol., 246: F334 - F342.PubMedGoogle Scholar
  48. LUCAS, W.J., 1976. The influence of Ca2+ and K+ on H14 CO3influx in internodal cells of Chara corallina. J. Exp. Bot., 27: 32–42.CrossRefGoogle Scholar
  49. LUCAS, W.J., 1979. Alkaline band formation in Chara corallina. Plant Physiology, 63, 248–254.PubMedCrossRefGoogle Scholar
  50. LUCAS, W.J. and DAINTY, J., 1977. HCO3 influx across the plasmalemma of Chara corallina. Divalent cation requirement. Plant Physiology, 60: 862–867.PubMedCrossRefGoogle Scholar
  51. LUCAS, W.J., KEIFER, D.W., and SANDERS, D., 1983. Bicarbonate transport in Chara corallina: Evidence for cotransport of HCO3 with H+. J. Membr. Biol., 73: 263–274.CrossRefGoogle Scholar
  52. LUCAS, W.J. AND NUCCITELLI, R., 1980. HCO3 and OH transport across the plasmalemma of Chara. planta, 150: 120–131.CrossRefGoogle Scholar
  53. LUHRING, H. and TAZAWA, M., 1985. The effect of cytoplasmic Ca2+ on the membrane potential and membrane resistance of Chara plasmalemma. Plant Cell Physiol., 26: 635–646.Google Scholar
  54. MCCONNAUGHEY, T.A., 1986. Oxygen and carbon isotope disequililbria in Galapagos corals: Isotopic thermometry and calcification physiology. Ph.D. Dissertation, University of Washington, Seattle.Google Scholar
  55. MILLER, A.J. and SANDERS, D., 1987. Depletion of cytosolic free calcium induced by photosynthesis. Nature, 326: 397–400.CrossRefGoogle Scholar
  56. MILLERO, F.J., 1979. The thermodynamics of the carbonate system in seawater. Geochim. Cosmochim. Acta, 43: 1651–1661.CrossRefGoogle Scholar
  57. MILLIMAN, J.D., 1974. Marine Carbonates. 375 pp. Berlin: Springer-Verlag.Google Scholar
  58. MORIYASU, Y., SHIMMEN, T., and TAZAWA, M., 1984. Vacuolar pH regulation in Chara australis. Cell Struct. Fune., 9: 225–234.CrossRefGoogle Scholar
  59. NAKAHARA, H. and KAKEI, M., 1983. The central dark line in developing enamel crystallite: An electron microscopic study. Bull. Josai Dental Univ., 12: 1–7.Google Scholar
  60. NIGGLI, V., SIGEL, E., and CARAFOLI, F, 1982. The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca-H + exchange in reconstituted liposomal systems. J. Biol. Chem., 257: 2350–2356.PubMedGoogle Scholar
  61. OHDE, S. and KITANO, Y., 1981. Behavior of minor elements in the transformation of coral aragonite to calcite. Proc. 4th Inter. Coral Reef Sym., Manila, 2: 91–94.Google Scholar
  62. OKAZAKI, M., 1977. Some enzymatic properties of Ca2+-dependent adeonosine triphosphatase from a calcareous marine alga, Serraticardia maxima and its distribuiton in marine algae. Botanica Marina 20: 347–354.CrossRefGoogle Scholar
  63. OKAZAKI, M., FUJII, M., USUDA, Y., and FURUYA, K., 1984. Soluble Ca2 + -activated ATPase and its possible role in calcification of the coccolithophorid Cricosphaera roscoffensis var. haptonemofera ( Haptophyta ). Botanica Marina, 27: 363–369.CrossRefGoogle Scholar
  64. ONEIL, J.R., CLAYTON, R.N., and MAYEDA, T.K., 1969. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys., 51: 5547–5558.CrossRefGoogle Scholar
  65. PAPA, S., LOFRUMENTO, N.E., LOGLISCI, M., and QUAGLIARIELLO, E., 1969. On the transport of inorganic phosphate and malate in rat-liver mitochondria. Biochim. Biophy. Acta, 189: 311–314.CrossRefGoogle Scholar
  66. PENTECOST, A., 1978. Calcification and photosynthesis in Corallina officinalis L. using the 14CO2 method. Brit. Phycol. J., 13: 383–390.CrossRefGoogle Scholar
  67. PENTECOST, A., 1980. Calcification in plants. Inter. Rev. Cytology, 62: 1–27.CrossRefGoogle Scholar
  68. RASI-COLDOGNO, F., PUGLIARELLO, M.C., and DE MJCHELIS, M.I., 1987. The Ca2 + -transport ATPase of plant plasma membrane catalyzes a nH+/Ca + exchange. Plant Physiology, 83: 994–1000.Google Scholar
  69. RAVEN, J.A., 1983. The transport and function of silicon in plants. Biol. Rev., 58: 179–207.CrossRefGoogle Scholar
  70. REDDY, M. M. and WANG, K. K., 1980. Crystallization of calcium carbonate in the presence of metal ionsl. Inhibition by magnesium ion at pH 8.8 and 25° C. J. Crystal Growth, 50: 470–480.CrossRefGoogle Scholar
  71. REGA, A.F. and GARRAHAN, P.J., 1986. The Ca2+ Pump of Plasma Membranes. 175 pp. Boca Raton: CRC Press.Google Scholar
  72. RIEDEL, G.F. and NELSON, D.M., 1985. Silicon uptake by algae with no known silicon requirement. II. Strong pH dependence of uptake kinetic parameters in Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol., 21: 168–171.CrossRefGoogle Scholar
  73. RUNHAM, N.W., THORNTON, P.R., SHAW, D.W., and WAYTE, R.C., 1969. The mineralization and hardness of the radular teeth of the limpet Patella vulgata L. Zeit. Zellforsch., 99: 608–626.CrossRefGoogle Scholar
  74. SCHERER, M. and SEITZ, H., 1980. Rare-earth element distribution in IIolocene and Pleistocene corals and their redistribution during diagenesis. Chem. Geol., 28: 279–289.CrossRefGoogle Scholar
  75. SCHUMAKER, K.S. and SZE, H., 1985. A Ca2+/H+ antiport system driven by the proton electrochemical gradient of a tonoplast H+-ATPase from oat roots. Plant Physiology, 79: 1111–1117.PubMedCrossRefGoogle Scholar
  76. SHEN, V., KOLHLER, G., and PECK, W.A., 1983. A high affinity, calmodulin-responsive (Ca2+ Mg2+) ATPase in isolated bone cells. Biochim. Biophys. Acta, 727: 230.PubMedCrossRefGoogle Scholar
  77. SIGEE, D.C., 1983. Localized uptake and extraction of calcium45 in dinoflagellate nuclei: An autoradiographic study. Protoplasma 117: 185–195.CrossRefGoogle Scholar
  78. SIGEE, D.C., 1985. The dinoflagellate chromosome. Adv. Bot. Res., 12: 205–264.CrossRefGoogle Scholar
  79. SIKES, C.S. and WHEELER, A.P., 1983. A systematic approach to some fundamental questions of carbonate precipitation. In Biomineralization and Biological Metal Accumulation (ed. P. Westbroek and E.W. de Jong ), pp. 285–289. Dordrecht: D. Reidel.CrossRefGoogle Scholar
  80. SIMKISS, K., 1976. Cellular aspects of calcification. In The Mechanisms of Calcification in Invertebrates. (ed. N. Watabe and K. M. Wilbur ). pp. 1–31. Columbia: University of South Carolina Press.Google Scholar
  81. STROHL, W.R. and TOUVINEN, O.H., eds. 1984. Microbial Chemoautotrophy. 355 pp. Columbus: Ohio State University Press.Google Scholar
  82. TAZAWA, M., KIKUYAMA, M., and SHIMMEN, T., 1976. Electric characteristics and cytoplasmic streaming of characeae cells lacking tonoplast. cEll Struct. Func., 1: 165–176.Google Scholar
  83. TAZAWA, M., SHIMMEN, T., and MIMURA, T., 1987. Membrane control in the characeae. Ann. Rev. Plant Physio., 38: 95–117.CrossRefGoogle Scholar
  84. TOWE, K.M. and LOWENSTAM, H.A., 1967. Untrastructure and development of iron mineralization in the radular teeth of Cryptochiton stellen (Mollusca). J. Ultrastruc. Res., 17: 1–13.CrossRefGoogle Scholar
  85. ULLRICH, K.J., RUMRICH, G., and KLOSs, S.,1984. Contr1iluminal sulfate transport in the proximal tubule of the rat kidney. I. Kinetics, effects of K+, Na +, Ca +, 1.1+, and anions. Pflugers Archives 402: 264–271.Google Scholar
  86. VAMBUTUS, V.K. and RACKER, E., 1965. Partial resolution of enzymes catalyzphotophosphorylation. I. Stimulation of photophosphorylation by a preparation of a latent Ca-dependent adenosine triphosphatase from chloroplasts. J. Biol. Cheni., 240: 2660.Google Scholar
  87. VOGEL, J.C., 1980. Fractionation of the stable carbon isotopes during photosynthesis. pp. 111–135 in Sitzungsberichte der Heidelberger Akademie der Wissenschaften 1980, 3. Abhandlung. Berlin: Springer-Verlag.Google Scholar
  88. VOLCANI, B.E., 1983. Aspects of silification in biological systems. In Biomineralization and Biological Metal Accumulation (ed. P. Westbroek and E. W. de Jong ), pp. 389–406. Dordrecht: D. Reidel.CrossRefGoogle Scholar
  89. WHEELER, A.P. and SIKES, C.S., 1984. Regulation of carbonate calcification by organic matrix. Amer. Zool., 24: 933–944.Google Scholar
  90. WIETH, J.O., 1979. Bicarbonate exchange through the human red cell membrane determined with 14C bicarbonate. J. Physiol., 294: 521–539.PubMedGoogle Scholar
  91. WILLIAMS, D.A., FOGARTY, K.E., TSIEN, R.Y., and FAY, F. S., 1985. Calcium gradients in single smoothmuscle cells revealed by the digital imaging microscope using Fura-2. Nature, 318: 558–561.PubMedCrossRefGoogle Scholar
  92. WILLIAMSON, R.E. and ASHLEY, C.C., 1982. Free Cat+ and cytoplasmic streaming in the alga Chara. Nature, 296: 647–651.PubMedCrossRefGoogle Scholar
  93. WOOD, C.M. and CAMERON, J.N., 1985. Temperature and the physiology of intracellular and extracellular acid-base regulation in the blue crab Callinectes sapidus. J. Exp. Biol., 114: 151–180.Google Scholar
  94. WUTHIER, R.E., 1984. Calcification of vertebrate hard tissues. Metal Ions in Biological Systems, 17: 411–472.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Ted McConnaughey
    • 1
  1. 1.Oceanography WB-10University of WashingtonSeattleUSA

Personalised recommendations