Advertisement

Organismic Autonomy in Biomineralization Processes

  • Klaus Vogel
  • Wolfgang F. Gutmann

Abstract

The energy budget of an organism is subject to selection. Based on this fact we present the following points:
  1. 1.

    Uptake of ions (mineral substances), their involvement in metabolism and their release are strictly controlled by the organism. The control requires energy.

     
  2. 2.

    Building-up mineral deposits which are larger than necessary for times of deficiency, charges the energy budget. For utilization as skeletal parts they must be secreted at or transported to special sites. The organism must often synthesize organic membranes for their protection or as templates. These and other related activities cost energy.

     
  3. 3.

    It follows that the incipient stages of biomineralization and the deposition of well-organized skeletal structures were already backed by selective advantages.

     
  4. 4.

    As primary selective advantages of biomineralization of unicellular organisms, control of cell shape, scaffolding for activities of cytoplasmatic fibres and rhizopodia and stabilisation of nucleus and organelles are discussed.

     
  5. 5.

    It results that the origin and evolution of biomineralization is controlled by the pre-existing biochemical organization and biomechanical construction of the organism. Biomineralization reflects the autonomy of the organism and is more than a mirror of evolution of ocean chemistry and more than detoxification.

     

Keywords

Skeletal Structure Skeletal Element Siliceous Structure Biomineralization Process Rigid Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALLEN, A.D. and WEISS, D.G., 1987. Microtubuli als interzelluläres Transport system. Spektrum der Wissenschaft, 4 /1987: 76–85.Google Scholar
  2. ANDERSON, O.R., 1983. Radiolaria. 355 pp. New York: Springer.CrossRefGoogle Scholar
  3. BEREITER-HAHN, J., 1985. Architecture of tissue cells. The structural basis which determines shape and locomotion of cells. Acta biotheor., 34: 139–148.PubMedCrossRefGoogle Scholar
  4. BEREITER-HAHN, J., (in press). Compartmention of calcium and energy metabolic pathways: Implica-Google Scholar
  5. tions for eukaryote evolution and control of cell proliferation. New York Academy of Science.Google Scholar
  6. BONIK, K., GRASSHOFF, M., GUTMANN, W.F., and MAIER, W., 1978. Hydraulik als Grundlage der Morphologie aller tierischen Lebewesen. Natur und Museum, 108: 162–174.Google Scholar
  7. CARAFOLI, E., INESI, G. and ROSEN, B.P., 1984. Calcium Transport across biological membranes.bt Sigel, H. Metal ions in biological systems, 17, 532 pp. New York, Basel: M. Dekker Inc.Google Scholar
  8. CARAFOLI, E. and PENNISTON, J.T., 1986. Das Calcium-Signal, Spektrum der Wissenschaft, 1986, No. 1: 76–85.Google Scholar
  9. DYSON, RD., 1978. Cell biology: A molecular approach. 616 pp. Boston, London, Sydney, Toronto: Allyn and Bacon.Google Scholar
  10. GRELL, K.G., 1968. Protozoologie, 2. Aufl., 511 pp. Berlin, Heidelberg, New York: Springer.Google Scholar
  11. GUTMANN, W.F., 1972. Die Hydroskelett-Theorie. Aufsätze und Reden der Senckenbergischen natur-forschenden Gesellschaft, 21, 91 pp. Frankfurt/Main: W. Kramer.Google Scholar
  12. GUTMANN, W.F, 1974. Die Evolation der Mollusken-Konstruktion: ein phylogenetisches Modell. Aufsatze u. Reden der Senckenberg. naturforschenden Gesellschaft, 25: 11–84.Google Scholar
  13. GUTMANN, W.F. and PETERS, D.S., 1973. Konstruktion und Selektion: Argumente gegen einen morphologisch verkürzten Selektionismus. Acta biotheor., 22: 151–180.PubMedCrossRefGoogle Scholar
  14. GUTMANN, W.F. and BONIK, K., 1981. Kritische Evolutionstheorie. 227 pp. Hildesheim: Gerstenberg.Google Scholar
  15. HARRISON, F.W., DUNKELBERGER, D., WATABE, N. and STUMP, A.B., 1981. Ultrastructure and Deposition of silica in Rhizopod Amebae. In Simpson, T.L., and Volcani, B.E. (Eds.). Silicon and Siliceous Structures in Biological Systems, 281–294. New York, Heidelberg, Berlin: Springer.CrossRefGoogle Scholar
  16. HAUSMANN, K., 1985. Protozoologie, 351 pp. Stuttgart, New York: G. Thieme.Google Scholar
  17. HEMLEBEN, CH., ANDERSON, O.R., BERTI IOLD, N. and SPINDLER, M., 1986. Calcification and chamber formation in Foraminifera–a brief overview. In Leadbeater, B.S.C. and Riding, R. (eds.). Biomineralisation in lower plants and animals. Sys. Assoc., spec. vol. 30: 237–249.Google Scholar
  18. KAESTNER, A., 1965. Lehrbuch der Speziellen Zoologie. I.: Wirbellose, 1. Teil, 845 pp. 2. Aufl. Stuttgart: Fischer.Google Scholar
  19. KAZMIERCZAK, J., ITIEKKOT, V. and DEGENS, E.T., 1985. Biocalcification through time: environmental challenge and cellular response, Paläont. Zeitschr., 59: 15–33.Google Scholar
  20. NIGGLI, V., SIGEL, E. and CARAFOLI, E. 1982. The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca+ -I I+ exchange in reconstituted liposomal systems. J. Biol. Chem., 257: 2350–2356.PubMedGoogle Scholar
  21. RÖTTGER, R., 1973. Die Ektoplasmahülle von Heterostegina depressa ( Foraminifera: Nummulitidae). Mar. Biol., 21: 127–138.CrossRefGoogle Scholar
  22. SIMPSON, T.L. and VOLCANI, B.E. (Eds.), 1981. Silicon and Siliceous Structures in Biological Systems, 587 pp. New York, Heidelberg, Berlin: Springer.Google Scholar
  23. SULLIVAN, C.W. and VOLLANI, B.E., 1981. Silicon in the cellular metabolism of diatoms. In Simpson, T.L. and Volcanic, B.E. Silicon and siliceous structures in Biological Systems, 587 pp. New York, I Ieidelberg, Berlin: Springer.Google Scholar
  24. TAPPAN, H., 1980. The paleobiology of plant protists. 128 pp. San Francisco: Freeman.Google Scholar
  25. TRÉGOUBOFF, G., 1953. Classe des Radiolaires (Radiolaria J. Müller 1858, emend.). In Grassé, P.-P. (Ed.). Traité de Zoologie. 1: 321–436. Paris: Masson et Cie.Google Scholar
  26. VOGEL, K. and GUTMANN, W.F., 1981: Zur Entstehung von Metazoen-Skeletten an der Wende vorn Präkambrium zum Kambrium. Festschrift der wissenschaftlichen Gesellschaft der J.W. Goethe-Universität Frankfurt am Main. 517–537. Wiesbaden: W. Steiner.Google Scholar
  27. VOLCANI, B.E., 1981. Cell wall formation in diatoms: morphogenesis and biochemistry. In Simpson, T.L.. and Volcani, B.E., (Eds.). Silicon and Siliceous Structures in Biological Systems. 156–200. New York, Heidelberg, Berlin: Springer.Google Scholar
  28. WEBER K. and OSBORN, M., 1985. Die Moleküle des Zellskeletts. Spektrum der Wissenschaft, 1985, No. 12: 10 2414.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Klaus Vogel
    • 1
  • Wolfgang F. Gutmann
    • 2
  1. 1.Geologisch-Paläontologisches InstitutJ.W. Goethe University of FrankfurtFrankfurtGermany
  2. 2.Senckenberg-MuseumFrankfurtGermany

Personalised recommendations