Manganese Transformations by Marine Bacillus Species

  • Elisabeth W. de Vrind-de Jong
  • Johannes P. M. de Vrind
  • Fred C. Boogerd
  • Peter Westbroek
  • Reinhardt A. Rosson


A wide variety of micro-organisms promote the oxidation or reduction of manganese, through indirect or direct mechanisms. An example of the latter category is Bacillus SGI, a marine organism isolated from a near-shore manganese sediment. Its mature dormant spores catalyze the oxidation of Mn 2+ to Mn 4+. The process requires molecular oxygen and is catalyzed by a spore coat component. The manganese oxide (Mn02) produced remains bound to the spore surface. The vegetative cells do not have the oxidizing capacity. They are able to reduce Mn4+ to Mn2+ under low-oxygen conditions. The reducing activity has a pH optimum of 7.5 and is abolished by preheating of the cells at 90° C for 5 minutes. Addition of mercuric chloride (HgCl2) (final concentration 0.01%) to cells which are actively reducing manganese oxide causes immediate cessation of the process. Manganese oxide reduction is also inhibited at high oxygen tensions and by inhibitors of the electron transport system. Bacillus cells contain b- and c-type cytochromes which are oxidized in situ when manganese oxide is added to an anoxic cell suspension. The results suggest that vegetative cells may use the manganese oxide formed by the spores from which they germinate as a terminal electron acceptor. The possible applications of manganese transforming micro-organisms in human society are discussed.


Manganese Oxide Mercuric Chloride Potassium Cyanide Manganese Nodule Manganese Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALI, S.H. STOKES, J.L., 1972. Stimulation of heterotrophic and autotrophic growth of Sphaerotilus discophorus by manganous ions. Antonie van Leeuwenhoek, 37: 519–528.CrossRefGoogle Scholar
  2. ARCHIBALD, F.S. DUONG, M.N.,1984. Manganese acquisition by Lactobacillus plantarurn. J. Bacter., 158: 1–8.Google Scholar
  3. ARCURI, E.J. EHRLICH, II.L., 1979. Cytochrome involvement in Mn(II) oxidation by two marine bacteria. Appl. Envir. Microbio., 37: 916–923.Google Scholar
  4. ARCURI, E.J. EHRLIHI-I, H.L., 1980. Electron transfer coupled to Mn(II) oxidation in two deep-sea Pacific Ocean isolates. In Biogeochemistry of Ancient and Modern Environments (eds. P.A. Trudinger, M.R. Walter B.J. Ralph ). pp. 339–344. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  5. BARBER, J., 1984. Has the mangano-protein of the water splitting reaction of photosynthesis been isolated? Trends Biochem. Sci., 9: 99–80.Google Scholar
  6. BROMFIELD, S.M. DAVID, D.J., 1976. Sorption and oxidation of manganous ions and reduction of manganese oxide by cell suspensions of a manganese oxidizing bacterium. Soil Biol. Biochem., 8: 37–43.Google Scholar
  7. BURDIDGE, D.J., KEPKAY, P.E. NEALSON, K.H., 1983. An in situ method for determining microbial manganese oxidation rates in sediments. In Biomineralization and Biological Metal Accumulation (eds. P. WESTBROEK E.W. DE JONG ). pp. 481–487. Reidel Publishing Company, Dordrecht.CrossRefGoogle Scholar
  8. BURDIDGE, D.J. NEALSON, K.H., 1985. Microbial manganese reduction by enrichment cultures from coastal marine sediments. Appl. Envir. Microbio., 50: 491–497.Google Scholar
  9. BURDIDGE, D.J. NEALSON, K.H., 1986. Chemical and microbiological studies of sulfide-mediated manganese reduction. Geomicrobio. J., 4: 361–387.Google Scholar
  10. CIIARNEY, J., FISCHER, W.P. HEGARTY, C.P., 1951. Manganese as an essential element for sporulation in the genus Bacillus. J. Bacter., 62: 145–148.Google Scholar
  11. DUBININA, G.A., 1978. Mechanism of the oxidation of divalent iron and manganese by iron bacteria growing at neutral plI of medium. Microbiology, 47: 471–478.Google Scholar
  12. EHRLICH, H.L., 1963. Bacteriology of manganese nodules I. Bacterial action on manganese in nodule enrichments. Appl. Microbiol., 11: 15–19.Google Scholar
  13. EHRLICH, H.L., 1968. Bacteriology of manganese nodules II. Manganese oxidation by a cell-free extract from a manganese nodule bacterium. Appl. Microbiol., 16: 197–202.Google Scholar
  14. EHRLICH, H.L., 1975. The formation of ores in the sedimentary environment of the deep sea with microbial participation. The case for ferromanganese concretions. Soil Sci., 119: 65–83.Google Scholar
  15. EHRLICH, H.L., 1980. Bacterial leaching of manganese ores. In Biogeochemistry of Ancient and Modern Environments (eds. P.A. Trudinger, M.R. Walter B.J. Ralph ). pp. 609–614. Springer Verlag, Berlin.CrossRefGoogle Scholar
  16. EHRLICH, H.L., 1984. Different forms of bacterial manganese oxidation. In Microbial Chemoautotrophy (eds. W.R. Strohl O.H. Tuovinen ). Ohio State Univ. Press, Ohio.Google Scholar
  17. EISENSTADT, E., FISCHER, S., DER, C.L. SILVER, S., 1973. Manganese transport in Bacillus subtilis W23 during growth and sporulation. J. Bacter., 113: 1363–1372.Google Scholar
  18. EMERSON, S., KALHORN, S., JACOBS, L., TEBO, B.M., NEALSON, K.H. ROSSON, RA, 1982. Environmental oxidation rate of manganese(II): bacterial catalysis. Geochim. Cosmochim. Acta, 46: 1073–1079.Google Scholar
  19. GHIORSE, W.C., 1984. Biology of iron and manganese bacteria. Ann. Rev. Microbiol., 38: 515–550.Google Scholar
  20. GHIORSE, W.C. EHRLICH, H.L., 1976. Electron transport components of the manganese oxide reductase system and the location of the terminal reductase in a marine Bacillus. Appl. Envir. Microbio., 31: 977–985.Google Scholar
  21. GHIORSE, W.C. HIRSCH, P., 1979. An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria. Arch. Microbiol., 123: 213–226.Google Scholar
  22. JANNASCH, H.W. TAYLOR, C.D., 1984. Deep sea microbiology. Ann. Rev. Microbiol., 38: 487–514.Google Scholar
  23. JOHNSON, A.H. STOKES, J.L., 1966. Manganese oxidation by Sphaerotilus discophorus. J. Bacter., 911: 543–1547.Google Scholar
  24. JUNG, W.K. SCHWEISFURTH, R., 1979. Manganese oxidation by an intracellular protein of a Pseudomonas species. Zeits. Algem. Mikrobiol., 19: 107–115.Google Scholar
  25. KEEN, C.L., LONNERDAL, B. HURLEY, L.S., 1984. Manganese. In Biochemistry of the essential Ultratrace Elements (ed. E. Frieden ). pp. 89–132. Plenum Press, New York.CrossRefGoogle Scholar
  26. KEPKAY, P.E., BURDIDGE, D.J. NEALSON, K.H., 1983. Kinetics of bacterial manganese binding and oxidation in the chemostat. Geomicrobiol. J., 3: 245–262.Google Scholar
  27. KRUMBEIN, W.E. ALTMAN, H.J., 1973. A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. Ilelgolandische Wissenschaftliche Meeresuntersuchungen, 25: 347–356.Google Scholar
  28. LIDSTROM, M.E., ENGEBRECHT, J.A. NEALSON, K.H., 1983. Evidence for plasmid-encoded manganese oxidation in a marine pseudomonad. FEMS Microbiol. Lett., 19: 1–6.Google Scholar
  29. MARSHALL, K.C., 1979. Biogeochemistry of manganese minerals. In Biogeochemical Cycling of Mineral-forming Elements (ed. P.A. Trudinger ). pp. 253–292. Elsevier Biomedical Press, Amsterdam.CrossRefGoogle Scholar
  30. MILLS, V.H. RANDLES, C.I., 1979. Manganese oxidation in Sphaerotilus discophorus particles. J. Gen. Appl. Microbiol., 25: 205–207.Google Scholar
  31. MORGAN, J.J. STUMM, W., 1964. Colloid-chemical properties of manganese dioxide. J. Coll. Sci., 19: 347–359.Google Scholar
  32. NEALSON, K.H., 1983. The microbial manganese cycle. In Microbial Geochemistry (ed. W.E. Krumbein ). pp. 191–221. Blackwell Scientific Publications, Oxford.Google Scholar
  33. NEALSON, K.H. FORD, J., 1980. Surface enhancement of bacterial manganese oxidation: implications for aquatic environments. Geomicrobiol. J., 2: 21–37.Google Scholar
  34. PALMER, F.E., STALEY, J.T., MURRAY, R.G.E., COUNSELL, T. ADAMS, J.B., 1986. Identification of manganese-oxidizing bacteria from desert varnish. Geomicrobiol. J., 4: 343–360.Google Scholar
  35. ROSSON, R.A. NEALSON, K.H., 1982. Manganese binding and oxidation by spores of a marine Bacillus. J. Bacter., 151: 1027–1034.Google Scholar
  36. ROSSON, R.A., TEBO, B.M. NEALSON, K.H.,1984. Use of poisons in the determination of microbial manganese binding rates in seawater. Appl. Envir. Microbio., 47: 740–745.Google Scholar
  37. SCHUETT, C., ZELBOR, J.L. COLWELL, R.R., 1986. Role of bacterial plasmids in manganese oxidation: evidence for plasmid-encoded heavy metal resistance. Geomicrobiol. J., 4: 389–406.Google Scholar
  38. VRIND, J.P.M. DE, BOOGERD, F.C. VRIND-DE JONG, E.W. DE, 1986. Manganese reduction by a marine Bacillus species. J. Bacter., 167: 30–34.Google Scholar
  39. VRIND, J.P.M. DE, VRIND-DE JONG, E.W. DE, VOOGT, J.W. DE, WESTBROEK, P., BOOGERD, F.C. AN ROSSON, R.A., 1986. Manganese oxidation by spores and spore coals of a marine Bacillus species. Appl. Envir. Microbio., 52: 1096–1100.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Elisabeth W. de Vrind-de Jong
    • 1
  • Johannes P. M. de Vrind
    • 1
  • Fred C. Boogerd
    • 1
  • Peter Westbroek
    • 1
  • Reinhardt A. Rosson
    • 2
  1. 1.Department of BiochemistryUniversity of LeidenLeidenThe Netherlands
  2. 2.Center for Great Lakes StudiesUniversity of Wisconsin at MilwaukeeMilwaukeeUSA

Personalised recommendations