Advertisement

The Soda Ocean Concept and Its Bearing on Biotic Evolution

  • Stephan Kempe
  • Józef Kazmierczak
  • Egon T. Degens

Abstract

The soda ocean hypothesis (Kempe & Degens, 1985) suggests an early alkaline ocean of high pH and low calcium and magnesium concentrations. The dissolved carbonates were gradually lost during the Precambrian, leaving the present sodium chloride ocean. The Precambrian paleontological record and the calcium physiology of living cells implicate that the stepwisebuildup of calcium in the ancient ocean was of primary importance for the generation of multicellular life and the onset of biocalcification.

Keywords

Total Alkalinity Acid Ocean Soda Lake East African Rift Thalassiosira Pseudonana 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AHKONG, Q.F., TAMPION, W. and LUCY, J.A., 1975. Promotion of cell fusion by divalent cation ionophores. Nature, 256:208–209.CrossRefPubMedGoogle Scholar
  2. ALLEGRE, C., 1985. The evolving Earth system. Terra Cognita, 5:5–14.Google Scholar
  3. AWRAMIK, S.M., SCHOPF, J.W. and WALTER, M.R., 1983. Filamentous fossil bacteria from Archean of Western Australia. Precambr. Res., 20:357–374.Google Scholar
  4. BONNER, J. T., 1971. Aggregation and differentiation in the cellular slime molds. Ann. Rev. Microbiol., 25:78–92.CrossRefGoogle Scholar
  5. BROCK, T.D., 1973. Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science, 179:480–483.CrossRefPubMedGoogle Scholar
  6. BRYERS, G.G., 1985. Water quality of Lake Taupo and the Waikato River - a general overview. In Transport of Carbon and Minerals in Major World Rivers Vol. III (eds. E.T. Degens, S. Kempe and R. Herrera). Mitt. Geol.-Palaeontol. Inst. Univ. Hamburg, 58:525–537.Google Scholar
  7. CAMPBELL, A.K., 1983. Intracellular Calcium. Its Universal Role as Regulator. 556 pp. Chichester: J. Wiley and Sons Ltd.Google Scholar
  8. CANTERFORD, G.S., 1980. Formation and regeneration of abnormal cells of the marine diatom Ditylum brightwellii (West) Grunow. J. Mar. Biol. Assoc. U.K., 60:243–253.CrossRefGoogle Scholar
  9. CARAFOLI, E. and PENNISTON, J.T., 1985. The calcium signal. Scientific American, 253:50–58.CrossRefGoogle Scholar
  10. CHAN, K.Y., 1976. Control of colony formation in Coelastrum microporum) (Chlorococcales, Chlorophyta). Phycologia, 15:149–154.CrossRefGoogle Scholar
  11. CHROST, R.J., 1978. Extracellular release in Chlorella vulgaris culture and role of bacteria accompanying algae in this process. Acta Microbiol. Polon., 27:55–62.Google Scholar
  12. CLOUD, P., 1976. Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology, 2:351–387.Google Scholar
  13. CONWAY, E.J., 1943. The chemical evolution of the ocean. Proc. Roy. Irish Acad. Sect. B, XLVIII, 161–212.Google Scholar
  14. COOK, P. and SHERGOLD, J.H., 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian/Cambrian boundary. Nature, 308:231–236.CrossRefGoogle Scholar
  15. COTMORE, J.M., NICHOLS, JR, J. and WUTHIER, R.E., 1971. Phospholipid calcium phosphate complex: enhanced calcium migration in the presence of phosphate. Nature, 172:1339–1341.Google Scholar
  16. DARBY, D.G., 1974. Reproductive modes of Huroniospora microreticulata from cherts of the Precambrian Gunflint Iron Formation. Geol. Soc. Amer. Bull., 85:1595–1596.CrossRefGoogle Scholar
  17. DEGENS, E.T., 1973. Accounting for the salts in the sea. Nature, 243:504–507.CrossRefGoogle Scholar
  18. DEGENS, E.T., 1976. Molecular mechanisms of carbonate, phosphate and silica deposition in the living cell. Top. Curr. Chem., 64:1–112.CrossRefGoogle Scholar
  19. DEGENS, E.T. and LKKOT, V., 1986. Ca2+-stress, biological response and particle aggregation in the aquatic habitat. Netherl. J. Sea Res., 20:109–116.CrossRefGoogle Scholar
  20. DEGENS, E.T., KAZMIERCZAK, J. and TEKKOT, V., 1986a. Cellular response to Ca2 + stress and its geological implications. Acta Palaeontol. Polon., 30 (for 1985), 115–135.Google Scholar
  21. DEGENS, E.T., KAZMIERCZAK, J. and TEKKOT, V., 1986b. Biomineralization and the carbon isotope record. Tschermaks Mineral. Petrogr. Mitt., 35:117–126.Google Scholar
  22. ERICSON, SJ.,1972. Toxicity of copper to Thalassiosira pseudonana in enriched inshore seawater. J. Phycol., and318–323.Google Scholar
  23. ERULKAR, S.D., 1981. The versatile role of calcium in biological systems. Interdise. Sci. Rev., 6:323–332. 1967.Google Scholar
  24. EUGSI’ER, H.P., 1967. Hydrous sodium silicates from Lake Magadi, Kenya: Precursors of bedded chert Science, 157: 1177–1180.Google Scholar
  25. EUGSLER, H.P., 1969. Inorganic bedded cherts from the Magadi Area, Kenya. Contr. Mineral. Petrol. 22:1–31.Google Scholar
  26. EUGSIER, H.P. and HARDIE, L.A., 1978. Saline lakes. In Lakes-Chemistry, Geology, Physics (ed. A. Lerman). pp. 237–293. New York: Springer Verlag.Google Scholar
  27. FANALE, F.P., 1971. A case for catastrophic early degassing of the Earth. Chem. Geol., 8:79–105.CrossRefGoogle Scholar
  28. FORD, T. D. and BREED, W. J., 1973. The problematic fossil Chuaria. Palaeontology, 16:535–550.Google Scholar
  29. FRANCHI, E. and CAMATINI, M., 1985. Evidence that a Ca2 + -chelator and a calmodulin blocker interfere with the structure of inter-Sertoli junctions. Tiss. Cell, 17:13–25.Google Scholar
  30. FRIEBELE, E.S., CORREL, D.L. and FAUST, M.A., 1978. Relationship between phytoplankton cell size and the rate of orthophosphate uptake: in situ observations of an estuarine population. Mar. Biol., 45:39–52.Google Scholar
  31. GARRELS, RM. and MACKENZIE, F.T., 1967. Origin of the chemical composition of some springs and lakes. In Equilibrium Concepts in Natural Water Systems. pp. 222–242. Amer. Chem. Soc., Adv. Chem., 67.Google Scholar
  32. GARRELS, RM. and MACKENZIE, F.T., 1971. Evolution of Sedimentary Rocks. 397 pp. New York: W.W. Norton and Comp.Google Scholar
  33. GERLOFF, G. C. and FISHBECK, K. A., 1999. Quantitative cation requirements of several green and blue-green algae. J. Phycol., 5:109–114.CrossRefGoogle Scholar
  34. GILULA, N. B. and EPSIEIN, M. L., 1976. Cell-to-cell communication, gap junction and calcium. Sym. Soc. Exper. Biol., 30:257–272.Google Scholar
  35. HARDIE, LA. and EUGS IER, H.P., 1970. The evolution of closed-basin brines. Mineral. Soc. Amer., Spec. Publ., 3:273–290.Google Scholar
  36. HART, M.H., 1978. The evolution of the atmosphere of the Earth. Icarus, 33:23–39.CrossRefGoogle Scholar
  37. HELLMAN, B. and ANDERSON, A., 1978. Calcium and pancreatic ß-cell function. IV. Evidence that glucose and phosphate stimulate Ca incorporation into different intracellular pools. Biochim. Biophys. Acta, 541:483–491.CrossRefPubMedGoogle Scholar
  38. HENDERSON-SELLERS, A. and COGLEY, J.G., 1982. The Earth’s early hydrosphere. Nature, 298:832–835.CrossRefGoogle Scholar
  39. HOFMANN, H. J., 1976. Precambrian microflora, Belcher Islands, Canada: significance and systematics. J. Paleont., 50:1040–1073.Google Scholar
  40. HOFMANN, H.J., 1977. The problematic fossil Chuaria from the late Precambrian Uinta Mountain Group, Utah. Precambr. Res., 4:1–11.Google Scholar
  41. HOFMANN, H.J.,1985. Precambrian carbonaceous megafossils. In Paleoalgology Contemporary Research and Applications,(eds. D.F. Toomey and M.H. Nitecki), pp. 20–33. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  42. HOFMANN, H.J. and GROTZINGER, J. P., 1985. Shelf-facies microbiota from the Odjick and Rocknest formations (Epworth Group; 1.89 Ga), northwestern Canada. Can. J. Ear. Sci, 22:1781–1792.Google Scholar
  43. HOLLAND, H.D., 1984. The Chemical Evolution of the Atmosphere and Oceans. 582 pp. Princeton, N.J.: Princeton Univ. Press.Google Scholar
  44. HUNTSMAN, S.A. and SUNDA, W.G., 1980. The role of trace metals in regulating the growth of phytoplankton. In The Physiological Ecology of Phytoplankton (ed. I. Morris), pp. 285–328. Boston: Blackwell Scientific.Google Scholar
  45. TEKKOT, V., 1982. Variations of dissolved organic matter during a plankton bloom: qualitative aspects based on sugar and amino acid analyses. Mar. Chem., 11:143–158.Google Scholar
  46. JONES, B. F., EUGSIER, H.P. and RETTIG, S.L., 1977. Hydrochemistry of the Lake Magadi basin, Kenya. Geochim. Cosmochim. Acta, 41:53–72.Google Scholar
  47. KASTING, J.F., 1984. The Evolution of the prehiotic atmosphere. Origins of Life, 14:75–82.CrossRefPubMedGoogle Scholar
  48. KAUFFMAN, E.G. and SIEIDTMANN, J.R., 1981. Are these the oldest metazoan trace fossils? J. Paleont., 55:923–947.Google Scholar
  49. KAZMIERCZAK, J., 1976. Devonian and modern relatives of the Precambrian Eosphaera: possible significance for the early eukaryotes. Lethaia, 9:39–50.CrossRefGoogle Scholar
  50. KAZMIERCZAK, J., TITEKKOT, V. and DEGENS, E.T., 1985. Biocalcification through time: environmental challenge and cellular response. Palaeontol. Zeit., 59:15–33.Google Scholar
  51. KEMPE, S., 1976. Zur Geohydrochemie des Alsterbeckens. Mitt. Geol.-Palaeontol. Inst. Univ. Hamburg, 47:199–238.Google Scholar
  52. KEMPE, S., 1977. Hydrographie, Warven-Chronologie und organische Geochemie des Van Sees, OstTuerkei. Mitt. Geol.-Palaeontol. Inst. Univ. Hamburg, 47:125–228.Google Scholar
  53. KEMPE, S., 1979. Carbon in the rock cycle. In The Global Carbon Cycle, SCOPE Rep. 13 (eds. B. Bolin, E.T. Degens, S. Kempe and P. Ketner). pp. 343–377. Chichester: J. Wiley and Sons.Google Scholar
  54. KEMPE, S., 1982. Long-term records of CO2 pressure fluctuations in fresh waters. In Transport of Carbon and Minerals in Major World Rivers, vol.1 (ed. E.T. Degens). Mitt. Geol.-Palaeontol. Inst. Univ. Hamburg, 52:91–332.Google Scholar
  55. KEMPE, S. and DEGENS, E.T., 1985. An early soda ocean? Chem. Geol., 53:95–108.CrossRefGoogle Scholar
  56. KNOLL, A. H., 1983. Biological interactions and Precambrian eukaryotes. In Biotic Interactions in Recent and Fossil Benthic Communities, (eds. M. J. S. Tevesz and P. L. McCall), pp. 251–283. New York: Plenum Publ. Corp.Google Scholar
  57. KNOLL, A. H. and BARGHOORN, E. S., 1977. Archean microfossils showing cell division from the Swaziland System of South Africa. Science, 198:396–398.CrossRefPubMedGoogle Scholar
  58. KNUTTON, S. and PAS ‘ERNAK, C. A., 1979. The mechanism of cell-cell fusion. Trends Biochem. Sci., 4:220–223.Google Scholar
  59. KOVAC, L., 1985. Calcium and Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 840:317–323.CrossRefGoogle Scholar
  60. KRATZ, W. and MYERS, J., 1955. Nutrition and growth of several blue-green algae. Amer. J. Botany, 42:282–287.CrossRefGoogle Scholar
  61. KRETSINGER, RH., 1976. Calcium binding proteins. Ann. Biochem., 45:239–262.CrossRefGoogle Scholar
  62. KRETSINGER, RH., 1977. Why does calcium play an informational role unique in biological systems? In Metal-Ligand Interactions in Organic Chemistry and Biochemistry (9th Jerusalem Symposium), pt. 2:(eds. B. Pullman and N. Goldbleum), pp. 257–263. Dordrecht: E. Lidel Publ. Co.Google Scholar
  63. KRETSINGER, RH., 1983; A comparison of the roles of calcium in biomineralization and in cytosolic signalling. In Biomineralization and Biological Metal Accumulation (eds. P. Westbroek and E. W. de Jong), pp. 123–131. Dordrecht: D. Reidel Publ. Co.CrossRefGoogle Scholar
  64. KUHN, W. R and KASTING, J.F., 1983. Effects of increased CO2 concentrations on surface temperature of the early Earth. Nature, 301:53–55.CrossRefGoogle Scholar
  65. KYLIN, A. and DAS, G., 1967. Calcium and strontium as micronutrients and morphogenetic factors for Scenedesmus. Phycologia, 6:201–210.CrossRefGoogle Scholar
  66. LABERGE, G.L., ROBBINS, E.I. and SCHMIDT, RG., 1984. New microfossil evidence of eukaryotes in early Proterozoic rocks (1.9 B.Y.) from the Lake Superior Region, North America. 27th Intern. Geol. Congr., Moscow, August 4–14:1984, Abstracts, vol. 1:sect. 01 to 03. pp. 241. Moscow: Nauka.Google Scholar
  67. LEE, C. and BADA, J.L., 1975. Amino acids in the equatorial Pacific, Sargasso Sea and Biscayne Bay. Limn. Oceanog., 22:502–510.Google Scholar
  68. LEHNINGER, A.L., 1982. Principles of Biochemistry.1005 pp. New York: Worth Publ. Inc.Google Scholar
  69. LINDGREN, S., 1982. Algal coenobia and leiospheres from the Upper Riphean of the Turukhansk region, eastern Siberia. Stockholm Contr. Geol., 38:1–20.Google Scholar
  70. MAISONNEUVE, J., 1982. The composition of the Precambrian ocean waters. Sedimentary Geology, 31:1–11.CrossRefGoogle Scholar
  71. MARMÉ, D., 1985. Calcium and Cell Physiology. 390 pp. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  72. OKELLEY, J., 1968. Mineral nutrition of algae. Ann. Rev. Plant Physiol., 19:89–112.CrossRefGoogle Scholar
  73. PFLUG, H.D., 1978. Yeast-like microfossils detected in oldest sediments of the earth. Naturwissenschaften, 65:611–615.CrossRefGoogle Scholar
  74. PFLUG, H.D. and Reitz, E., 1985. Earliest phytoplankton of eukaryotic affinity. Naturwissenschaften, 72:656–657.CrossRefGoogle Scholar
  75. REED, M.H., 1982. Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta, 46:513–528.Google Scholar
  76. ROBBINS, E.I., PORTER, K.G. and HABERYAN, K.A., 1985. Pellet microfossils: possible evidence for metazoan life in early Proterozoic time. Proc. Nat. Acad. Sci. U.S.A., 82:5809–5813.CrossRefGoogle Scholar
  77. ROGERS, JJ.W., 1978. Inferred composition of early Archaean crust and variation in crustal composition through time. In Archean Geochemistry (eds. B.F. Windley and S.M. Naqvi.) pp. 25–39. Amsterdam: Elsevier.CrossRefGoogle Scholar
  78. RONOV, A.B., 1968. Probable changes in the composition of seawater during the course of geological time. Sedimentology, 10:25–43.CrossRefGoogle Scholar
  79. SCHOPF, J.W., 1978. The evolution of the earliest cells. Sci. Amer., 239:85–102.Google Scholar
  80. SHELDON, RP., 1981. Ancient marine phosphates. Ann Rev. Ear. Planet. Sci., 9:251–284.CrossRefGoogle Scholar
  81. SIEVER, R, 1977. Early Precambrian weathering and sedimentation: An impressionistic view. In Chemical Evolution of the Early Precambrian (ed. C. Ponnamperuma), pp. 13–23. New York: Academic Press.Google Scholar
  82. STEGMANN, G., 1940. Die Bedeutung der Spurenelemente fuer Chlorella. Zeit. Bot., 35:385–422.Google Scholar
  83. SVERDRUP, H.U., JOHNSON, M.W. and FLEMING, R.H., 1970. The Oceans, their Physics, Chemistry, and General Biology. 1087 pp. Engelwood Cliffs, NJ.: Prentice-Hall.Google Scholar
  84. THOMAS, W. H., HALLIBAUGH, J. T. and SEIBERT, D. L. R, 1980. Effects of heavy metals on the morphology of some marine phytoplankton. Phycologia, 19:202–209.CrossRefGoogle Scholar
  85. THOMSEN, L., 1980. 129Xe on the outgassing of the atmosphere. J. Geophy. Res., 85:4374–4378.CrossRefGoogle Scholar
  86. TIMOFEEV, B.V., 1966. Microphytological Investigations of Ancient Formations. Acad. Sci. USSR, lab. Precambrian Geol. 145 pp. Leningrad: Nauka (in Russian).Google Scholar
  87. TRAINOR, F.R, 1969. Scenedesmus morphogenesis. Trace elements and spine formation. J. Phycol., 5:185–190.CrossRefGoogle Scholar
  88. TYNNI, R and UUTELA, A., 1984. Microfossils from the Precambrian Muhos Formation in Western Finland. Geol. Surv. Finland Bull., 330:5–38.Google Scholar
  89. UREY, H.C., 1951. The origin and development of the Earth and other terrestrial planets. Geochim. Cosmochim. Acta, 1:209–277.Google Scholar
  90. VEIZER, J., 1983. Geological evolution of the Archean-early Proterozoic Earth. In Earth’s Earliest Biosphere (ed. J.W. Schopf), pp. 240–259. Princeton N.J.: Princeton Univ. Press.Google Scholar
  91. VEIZER, J., 1985. Carbonates and ancient oceans: isotopic and chemical record on time scales of 107-109 years. Geophys. Monog. Amer. Geophs. Uni n, 32:595–601.CrossRefGoogle Scholar
  92. VEIZER, J. and COMPSTON, W., 1976. Sr/ Sr in Precambrian carbonates as an index of crustal evolution. Geochim. Cosmochim. Acta, 40:905–915.Google Scholar
  93. VEIZER, J., COMPSTON, W., HOEFS, J., and NIELSEN, H., 1982. Mantle buffering of the early oceans. Naturwissenschaften, 69:173–180.CrossRefGoogle Scholar
  94. VIDAL, G.K, 1984. The oldest eukaryotic cells. Sci. Amer., 250:48–57.Google Scholar
  95. VIDAL, G. and KNOLL, A.H., 1982. Radiations and extinctions of plankton in the late Proterozoic and early Cambrian. Nature, 297:57–60.CrossRefGoogle Scholar
  96. WALKER, J., 1983. Possible limits on the composition of the Archean ocean. Nature, 302:518–520.CrossRefGoogle Scholar
  97. WANG, F., 1985. Middle-Upper Proterozoic and lowest Phanerozoic microfossil assemblages from SW China and contiguous areas. Precambr. Res., 29:33–43.Google Scholar
  98. WEDEPOHL, KH., 1963. Einige Ueberlegungen zur Geschichte des Meerwassers. Fortsch. Geol. Rheinland Westfalen, 10:129–150.Google Scholar
  99. WOESE, C.R and FOX, G.E., 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Nat. Acad. Sci. U.S.A., 74:5088–5091.CrossRefGoogle Scholar
  100. WOESE, C.R, MAGRUM, L.J. and FOX, G. E., 1978. Archaebacteria. J. Mol. Evol., 11:245–252.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Stephan Kempe
    • 1
  • Józef Kazmierczak
    • 2
  • Egon T. Degens
    • 1
  1. 1.SCOPE/UNEP International Carbon Unit, Geological-Paleontological InstituteUniversity of HamburgHamburg 13Federal Republic of Germany
  2. 2.Institute of PaleobiologyPolish Academy of ScienceWarszawaPoland

Personalised recommendations