Low Temperature Carbonate Phosphate Materials or the Carbonate — Apatite Problem: A Review

  • H. Catherine
  • W. Skinner


Hydroxyapatite and fluorapatite are well known and documented crystalline mineral phases. Apatite containing carbonate, the usual species present in vertebrate tissues and in phosphorites, however, remains an enigma. It has been impossible to accurately determine the chemical composition and the precise crystalline configuration of the mineral apatitic phase formed in biologic environments.

Experimental studies in the Cao — P2O5 — H2O — CO2 system at high temperature and elevated CO2 pressures have led to suggestions of two possible lattice sites for carbonate substitution in the Ca-apatites [Ca5(PO4)3(OH)], the (F,OH) site and for (PO4). Several structural configurations of such substitutions have been presented as models for carbonate apatite.

Extrapolation of these results, to the low temperatures and pressure conditions appropriate for phosphorites and vertebrate tissues, is not straightforward. The mineral in these localities is extremely fine grained. It maybe composed of more than one mineral species, intimately associated with bio-organic compounds, and usually undergoes alteration post initial (primary) precipitation. Uptake of ions and/or resorbtion and redeposition are characteristic of the biologically mediated mineral(s).

During the formation, accumulation and maturation of sedimentary phosphorites, and/or vertebrate tissues, local chemical and physical factors, such as the concentration of fluorine or sites for nucleation, play significant roles in the composition and structure of the apatitic mineral phase.


Carbonate Apatite Apatite Structure Apatitic Phase Carbonate Substitution Apatitic Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALBRIGHT, J.A., & SKINNER, H.C.W., 1987. Bone: Structural organization and remodeling dynamics. In Scientific Basis of Orthopaedics, 2 ed. (JA. Albright & R.A. Brand) 161–198. New York: AppletonCentury-Crofts.Google Scholar
  2. ARMSTRONG, W.D., & SINGER, L., 1965. Composition and constitution of the mineral phase of bone. Clin. Orthop., 38:179–190.Google Scholar
  3. BILTZ, R.M., & PELLIGRINO, E.D., 1969. The chemical anatomy of bone. I. A comparative study of bone composition. J. Bone Joint Surg., 51 A:456–466.Google Scholar
  4. BONEL, G., 1972. Contribution a l’étude de le carbonatation des apatites. I. Synthese et etude des proprieties physico-chemiques des apatites carbonatees du type A. Ann. chem. (Paris), 7:65–78.Google Scholar
  5. BROPHY, G.P. & NASH, T.J., 1968. Composition, infrared and x-ray analysis of fossil bone. Amer. Mineral., 53:445–454.Google Scholar
  6. BURNETT, W.C., 1977. Geochemistry and origin of phosphorite deposits off Chile and Peru. Bull. Geol. Soc. Amer., 88:813–823.CrossRefGoogle Scholar
  7. BURNETT, W.C., BEERS, M.J., & ROE, K.K., 1982. Growth rates of phosphate nodules from the continental margin off Peru. Science, 215:1616–1618.PubMedCrossRefGoogle Scholar
  8. CHENEY, T.M., MCCLELLAN, G.H. & MONTGOMERY, E.S., 1979. Sechura phosphate deposits, their stratigraphy, origin and composition. Econ. Geol., 74:232–259.CrossRefGoogle Scholar
  9. DRIESSENS, F.C.M., 1982. Mineral Aspects of Dentistry. Basil, Switzerland, S. Karger.Google Scholar
  10. DRIESSENS, F.C.M., VERBEECK, R.M.H. and KIEIIENS, P., 1983a. Mechanism of substitution in carbonated apatites. Zeit. Anorganic Alloganic Chem., 504:195–200.CrossRefGoogle Scholar
  11. DRIESSENS, F.C.M., VERBEECK, R.M.H., & I IEIJLIGERS, H.J.M., 1983b. Some physical properties of Na-and CO3-containing apatites synthesized at high temperatures. Inorgan. Chim. Acta, 80:19–23.Google Scholar
  12. GRUNER, J.W., & MCCONNELL, D., 1937. The problem of carbonate apatites. The structure of francolite. Zeit. Kristallogr., 97A:208–215.Google Scholar
  13. GRUNER, J.D., MCCONNELL, D., & ARMSTRONG, W.D., 1937. The relationship between crystal structure and chemical composition of enamel and dentine. J. Biol. Chem., 121:771–781.Google Scholar
  14. GULBRANDSON, R.A., 1966. Chemical composition of phosphorites of the Phosphoria formation. Geochim. Cosmochim. Acta, 30:769–778.Google Scholar
  15. GULBRANDSON, RA., 1969. Physical and chemical Factors in the formation of marine apatite. Econ. Geol., 64:365–382.CrossRefGoogle Scholar
  16. GULBRANDSON, R.A., 1970. Relation of carbon dioxide content of apatite of the Phosphoria Formation to regional facies. U.S. Geol. Surv. Prof. Pap., 700B:9–13.Google Scholar
  17. LABARTHE, J.C., BONEL, G., & MONTEL, G., 1971. Sur la localization des ions carbonate dans le reseau des apatites calciques. Comp. Ren. Acad. Paris, 273C:349–355.Google Scholar
  18. LABARTIE, J.C., TIIERASSE, M., BONEL, G. & MONTEL, G., 1973. Sur le structure des apatites phosphocalcique carbonees de type B. Compte Rendue Academic de Paris, 276C, 1175–1178.Google Scholar
  19. LEGEROS, R.Z., TRAUTZ, O.R., KLEIN, E. & LEGEROS, J.P., 1969. Two types of carbonate substitution in the apatite structure. Experimentia, 25:5–7.CrossRefGoogle Scholar
  20. MCARTIIUR, J.M., 1980. Post depositional alteration of the carbonate-fluorapatite phase of Moroccan phosphates. In Marine-Phosphorites-Geochemistry, Occurrence Genesis (Y.E. Bentor, ed.), p. 53–60. Soc. Econ. Paleontol. Mineral. Spec. Publ. 29:53–60.Google Scholar
  21. MCARTIIUR, J.M., 1985. Francolite geochemistry-compositional controls during formation, diagenesis, metamorphism and weathering. Geochim. Cosmochim. Acta, 49:23–35.CrossRefGoogle Scholar
  22. MCCLELLAN, G.H., 1980. Mineralogy of carbonate fluorapatite. Geol. Soc. London, 137:675–681.CrossRefGoogle Scholar
  23. MCCLELLAN, G.l-l., & Lehr, J.R., 1969. Crystal chemical investigations of natural apatites. Amer. Mineral., 54:1374–1391.Google Scholar
  24. MCCONNELL, D., 1970. Crystal chemistry of bone mineral: I-lydrated carbonate apatites. Amer. Mineral., 55:1659–1669.Google Scholar
  25. MCCONNELL, D., 1971. Crystal chemistry of phosphorite. Econ. Geol., 66:1085–1086.CrossRefGoogle Scholar
  26. MCCONNELL, D., 1973. Apatite. Its Crystal Chemistry, Mineralogy, Utilization, and Geologic and Biologic Occurrences. New York, Springer Verlag.Google Scholar
  27. MCCONNELL, D. & GRUNER, J.W., 1940. The problem of carbonate apatites. III Carbonate apatite from Magnet Cove, Arkansas. Amer. Mineral., 25:157–167.Google Scholar
  28. NELSON, D.G.A., & FEATHERSTONE, J.D.B., 1982. Preparation, analysis and characterization of carbonated apatite. Calc. Tiss. Inter., 34:S69–S81.Google Scholar
  29. NEUMAN, W.F., & MULRYAN, B.J., 1967. Synthetic Hydroxyapatite Crystals. III The carbonate System. Cale. Tiss. Res., 1:94–104.Google Scholar
  30. SANTOS, M. & GONZALEZDIAZ, P.F., 1977. A model for B Carbonate Apatite. Inorgan. Chem., 16:2131–2134.Google Scholar
  31. SCHRAER, R., & SCHRAER, H., 1970. The avian shell gland: A study in calcium translocation. In Biological Calcification: Cellular and Molecular Aspects (H. Schraer, ed.), pp. 347–373. New York: Appleton-Century-Crofts.CrossRefGoogle Scholar
  32. SIMPSON, D., 1964. The nature of alkali carbonate apatites. Amer. Mineral., 49:363–376.Google Scholar
  33. SIMPSON, D., 1965. Carbonate in hydroxlapatite. Science, 147:501–502.PubMedCrossRefGoogle Scholar
  34. SIMPSON, D., 1972. Problems of the composition and structure of bone minerals. Clin. Orthop. Rel. Res., 86:260–286.CrossRefGoogle Scholar
  35. SKINNER, H.C.W., 1968. X-ray diffraction analysis technique to monitor composition fluctuation within the mineral group-apatite. Appl. Spectros., 22:412–414.CrossRefGoogle Scholar
  36. SKINNER, H.C.W., 1973. Phase relations in the CaO-P2O5–H2O system from 300° C. to 600° C. at 2 kb H2O pressure. Amer. J. Sci., 273:545–560.Google Scholar
  37. SKINNER, H.C.W., KEMPNER, E.S., & PAK, C.Y.C., 1972. Preparation of the mineral phase of bone using ethylenediamine extraction. Cale. Tiss. Res., 10:257–268.Google Scholar
  38. THOMSON, J.M., 1983. Offshore Peruvian phosphorite: a reappraisal of its age and genesis. Chem. Geol., 38:93–105.CrossRefGoogle Scholar
  39. THOMSON, J., CALVER, S.E., MUKERJEE, S., BURNETT, W.C. & BREMNER, J.M., 1984. Further studies of the nature, composition and ages of contemporary phosphorite from the Namibian Shelf. Ear. Planet. Sci. Let., 69:341–353.Google Scholar
  40. YOUNG, E.J., MYERS, A.T., MUNSON, E.L., & CONKLIN, N., 1969. Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Durango, Mexico. U.S. Geol. Surv. Prof. Pap., 650:84–89.Google Scholar
  41. YOUNG, R.A., & ELLIOTT, J.C., 1966. Atomic-scale bases for several properties of apatites. Arch. Oral Biol., 11:699–707.CrossRefGoogle Scholar
  42. ZAPANTALEGEROS, R., 1965. Effect of carbonate on the lattice parameters of apatite. Nature, 206:403–404.CrossRefGoogle Scholar
  43. ZIPKIN, I., 1970. The inorganic composition of bones and teeth. In Biological Calcification: Cellular and Molecular Aspects (H. Schraer, ed.), pp. 69–103. New York: Appleton-Century-Crofts.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • H. Catherine
    • 1
  • W. Skinner
    • 1
  1. 1.Department of Geology and GeophysicsYale UniversityNew HavenUSA

Personalised recommendations