Advertisement

Dispersants

  • Daniel J. Shanefield

Abstract

Sedimentation Height. If a ceramic powder with a particle size ranging from about 1 mm to 5 mm is well dispersed (deflocculated or deagglomerated) in a fluidizing liquid (the solvent) and then left to settle by the forces of gravity, after a few hours the particles will form a fairly dense compact at the bottom of the vessel, with a packing factor of about 50% of the theoretical density of the fully sintered ceramic. The solvent lubricates the particles as they fall, letting them pack better than they would in the dry “shaken and settled” example listed in Table 5.1, which only would be about 33% of theoretical density (T.D.). This wet-settled packing factor is approximately as good as in the dry “lubricated and pressed” example in that table, even though only 1 g of gravity is the force, compared to 10,000 pounds per square inch or so in dry pressing. The reason for the good packing is a highly effective sort of lubrication that the solvent provides, which allows the falling particles to rearrange themselves, filling whatever pores are close to their individual sizes. The settled condition is shown in Fig. 8.1, compared to the same weight of poorly dispersed (flocculated) powder that only wet-settles to a larger final volume with a lower packing factor. If the powder is very much flocculated, and there is a lot of it in the slip, there might not be any visible settling at all, since the floc can fill the entire container. Various intermediate levels of dispersion, occurring either because the dispersant or the mechanical action (ball milling, etc.) are only moderately effective, will result in various intermediate heights of the powder column after a few hours. Therefore the “sedimentation height” of the settled powder has been used as a quantitative measure of dispersion effectiveness.1

Keywords

Ceramic Powder Solid Loading High Solid Packing Factor Ceramic Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. A. Ring, et al., J. Am. Ceram. Soc., 72 (1989) 1918.CrossRefGoogle Scholar
  2. I. A. Aksay, et al., J. Mat’ls. Res., 9 (1994) 451.CrossRefGoogle Scholar
  3. 2.
    R. O. James, Advances in Ceramics, 21 (1987) 349 [see particularly Fig. 3].Google Scholar
  4. 3.
    A. Karas, T. Kumagai, and W. R. Cannon, Adv’d. Ceram. Mat’ls., 3 (1988) 374.Google Scholar
  5. W. R. Cannon, et al., Advances in Ceram., 26 (1989) 525 [see Fig. 2a].Google Scholar
  6. 4.
    H. Takabe, et al., J. Ceram. Soc. Japan, 100 (1992) 750 [see Fig. 2].CrossRefGoogle Scholar
  7. J. Faisson and R. A. Haber, Ceram. Eng. Sci. Proc, 12 (1991) 106.Google Scholar
  8. 5.
    R. E. Mistier, D. J. Shanefield, and R. B. Runk, page 411 in G. Y. Onoda and L. L. Hench, “Ceramic Processing Before Firing,” J. Wiley, New York (1978) [see Table 30.2 and compare to bottom of Table 30.3].Google Scholar
  9. 6.
    B. C. Matsuddy, et al., Advances in Ceram., 9 (1984) 246.Google Scholar
  10. 8.
    McCutcheon’s Emulsions and Detergents,” McCutcheon’s Publ., Glenn Rock, NJ (1993) [technical data and supplier addresses for hundreds of surfactants]; R. B. McCay, “Technical Applications of Dispersants,” Marcel Dekker, New York (1994).Google Scholar
  11. 9.
    C. Beck and D. J. Shanefield, Am. Ceram. Soc. Bul., 67 (1988) 644. S. M. Marschner, Ph.D. Thesis, Rutgers Univ., (May 1991) pages 42, 51, 59 [available from UMI, Ann Arbor, Michigan]. (See also section 9.4 of this book.)Google Scholar
  12. 10.
    M. J. Rosen, “Surfactants,” J. Wiley, New York (1978); Anon., “The HLB System,” ICI Americas Inc., Wilmington, Del. (1980).Google Scholar
  13. 12.
    A. Roosen, Ceram. Trans., 1B (1988) 675 [see particularly table 3].Google Scholar
  14. 13.
    G. W. Phelps and M. G. McLaren, page 211 in “Ceramic Processing Before Firing,” G. Y. Onoda and L. L. Hench, eds, J. Wiley, New York (1978) [Fig. 17.4]; Anon., Am. Ceram. Soc. Bul., 71 (1992) 185.Google Scholar
  15. W. Kohut, Am. Ceram. Soc. Bul., 71 (1992) 947.Google Scholar
  16. A. B. Corradi, et al., J. Am. Ceram. Soc., 77 (1994) 509.CrossRefGoogle Scholar
  17. 14.
    J. Faisson and R. A. Haber, Ceram. Eng. Sci. Proa, 12 (1991) 106.Google Scholar
  18. 16.
    G. D. Parfitt, “Dispersion of Powders in Liquids,” Elsevier, N. Y (1981) 315.Google Scholar
  19. 17.
    H. van Olphen, “Clay Colloid Chemisty, “ J. Wiley, New York (1977) 167.Google Scholar
  20. J. S. Reed, “Introduction to the Principles of Ceramic Processing,” J. Wiley, New York (1988) 154 [see Fig. 11.1a].Google Scholar
  21. 18.
    A. Foissy, J. Colloid and Interface Sci., 96 (1983) 275.CrossRefGoogle Scholar
  22. J. Cesarano and I. A. Aksay, J. Am. Ceram. Soc., 71 (1988) 1062.CrossRefGoogle Scholar
  23. Z. C. Chen, T. A. Ring, and J. Lemaitre, Ceram. Trans., 22 (1991) 257.Google Scholar
  24. K. Nagata, Ceramic Trans. ‚22 (1991) 335 (see Fig.2).Google Scholar
  25. K. Nagata, Ceramic Trans., 26 (1991) 205 (see Fig.3).Google Scholar
  26. 19.
    A. Bleier, et al., Colloids Surf., 1 (1980) 407.CrossRefGoogle Scholar
  27. 20.
    L. Bergstrom, et al., J. Am. Ceram. Soc., 72 (1989) 103.CrossRefGoogle Scholar
  28. S. G. Malghan, et al., Ceram. Trans., 26 (1992) 38.Google Scholar
  29. J.-F. Wang, R. E. Riman, and D. J. Shanefield, Ceram. Trans., 26 (1992) 240.Google Scholar
  30. 21.
    M. Liphard and W. von Rybinski, Progr. Colloid & Polymer Sci., 77 (1988) 158.CrossRefGoogle Scholar
  31. 22(a).
    R. J. Hunter, “Foundations of Colloid Sci.,” Clarendon Press, Oxford (1987) p. 489.Google Scholar
  32. 22(b).
    J. F. Stansfield, U.S. Pat. 3,996,059 (1976).Google Scholar
  33. 22(c).
    A. Topham, U.S. Pat. 4,224,212 (1980); see also double-asterisk footnote in Chapter 10 [material is similar to KD-3 polyimide ester copolymer, from ICI Co., Wilmington, DE].Google Scholar
  34. 23.
    L. Romo, et al., Disc. Faraday Soc., 42 (1966) 232.CrossRefGoogle Scholar
  35. T. Allen and R. M. Patel, J. Colloid and Interface Sci., 37 (1971) 595.CrossRefGoogle Scholar
  36. A. Doroszkowski, et al., Faraday Discuss’n of Chem. Soc., 65 (1978) 252.CrossRefGoogle Scholar
  37. F. F. Lange, et al., J. Am. Ceram. Soc., 77 (1994) 922.CrossRefGoogle Scholar
  38. 24.
    B. M. Moudgil, et al., Advances in Ceram., 21 (1987) 483 [Fig. 1].Google Scholar
  39. 25.
    R. J. Hunter, “Found’ns of Colloid Sci.,” Clarendon Press, Oxford (1987) p. 489.Google Scholar
  40. R. G. Horn, J. Am. Ceram. Soc., 73 (1990) 1117 [see particularly page 1126].CrossRefGoogle Scholar
  41. 26.
    D. J. Shaw, “Introduction to Colloid Chemistry,” Butterworths, N.Y. (1980) p.208.Google Scholar
  42. I. Sushumna and E. Ruckenstein, J. Mat’ls. Res. 7 (1992) 2884 (see especially page 2888].CrossRefGoogle Scholar
  43. 27.
    J. Cesarano and I. A. Aksay, J. Am. Ceram. Soc., 71 (1988) 1062 [at 50 volume % solids loading of a half micron powder, see Fig.5].CrossRefGoogle Scholar
  44. 29.
    I. A. Aksay, Ceram. Int’l., 17 (1991) 267 [see particularly page 272].CrossRefGoogle Scholar
  45. 30.
    A. Doroszkowski, et al., Faraday Discuss’n of Chem. Soc., 65 (1978) 252.CrossRefGoogle Scholar
  46. T. K. Yin and I. A. Aksay, Ceram. Trans., 1B (1988) 654.Google Scholar
  47. 31.
    I. A. Aksay, et al., Ceram. Trans., 1 (1988) 654Google Scholar
  48. 32.
    W. A. Ducker, Z. Xu, D. R. Clarke, and J. N. Israelachvili, J. Am. Ceram. Soc., 77 (1994) 437.CrossRefGoogle Scholar
  49. J. C. Chang, F. F. Lange, and D. S. Pearson, J. Am. Ceram. Soc., 77 (1994) 19.CrossRefGoogle Scholar
  50. 33.
    A. J. Ruys, et al., Am. Ceram. Soc. Bul., 69 (1990) 828.Google Scholar
  51. 34.
    J. C. Le Bell, et al., J. Colloid & Interface Sci., 55 (1976) 60.CrossRefGoogle Scholar
  52. 35.
    E. Carlstrom, et al., Cer. Trans. 2(1989) 175.Google Scholar
  53. 36.
    C. W. A. Bromley, Colloid Surf., 17 (1986) 1.CrossRefGoogle Scholar
  54. 37.
    H. van Olphen, “Clay Colloid Chemisty, “ J. Wiley, New York (1977) 167.Google Scholar
  55. 38.
    W. R. Cannon, et al., Advances in Ceram., 26 (1989) 525.Google Scholar
  56. R. Moreno, Am. Ceram. Soc. Bul., 71 (1992) 1521.Google Scholar
  57. 39.
    R. I. Feigin and D. H. Napper, J. Colloid and Interface Sci., 75 (1980) 525.CrossRefGoogle Scholar
  58. R. J. Hunter, “Foundations of Colloid Sci.,” Clarendon Press, Oxford, UK (1987) 483; M. Yasrebi, Ph.D. Thesis, Univ. of Washington (1988) [available from UMI, Ann Arbor, Michigan].Google Scholar
  59. S. J. Patel and M. Tirrell, Ann. Rev. Phys. Chem., 40 (1989) 597.CrossRefGoogle Scholar
  60. 40.
    R. Moreno, Am. Ceram. Soc. Bul., 71 (1992) 1521 [see particularly p. 1527].Google Scholar
  61. 41.
    K. Nagata, J. Ceram. Soc. Japan, 100 (1992) 1271, in Japanese [see Fig. 6].CrossRefGoogle Scholar
  62. 42.
    J. A. Hersey, Powder Technol., 11 (1975) 41.CrossRefGoogle Scholar
  63. A. Garg and E. Matijevic, Langmuir, 4 (1988) 38.CrossRefGoogle Scholar
  64. E. Liden, et al., M. Persson, E. Carlstrom, and R. Carlsson, J. Am. Ceram. Soc., 74 (1991) 1335; E. Liden, Ph.D. Thesis, Chalmers University of Technology, Goteborg, Sweden (1994) 23 and 51.CrossRefGoogle Scholar
  65. 43.
    R. G. Horn, J. Am. Ceram. Soc., 73 (1990) 1117 [theory].CrossRefGoogle Scholar
  66. S. S. Patel, Annual. Rev. Phys. Chem., 40 (1989) 597 [experiments].CrossRefGoogle Scholar
  67. 44.
    D. J. Shanefield and R. E. Mistier, Am. Ceram. Soc. Bul., 53 (1974) 416.Google Scholar
  68. 45.
    W. R. Cannon and R. Becker, Advances in Ceram., 26 (1989) 525.Google Scholar
  69. 46.
    K. E. Howard, et al., J. Am. Ceram. Soc., 73 (1990) 2543.CrossRefGoogle Scholar
  70. 47.
    X. Chen, D. J. Shanefield, and D. E. Niesz, AmCeram. Soc. Bul., 69 (1990) 496; X. Chen, “Pressureless Sintering with Yttria and Alumina Additives,” M.S. Thesis, Rutgers University (1991).Google Scholar
  71. 48.
    A. Stanzeski, D. W. Scott, and D. J. Shanefield, Am. Ceram. Bul., 72 (1993) 218.Google Scholar
  72. 49.
    M. J. Edirisinghe, et al., Ceram. Trans. 26 (1992) 165.Google Scholar
  73. 50.
    E. S. Tormtj, L. M. Robinson, W. R. Cannon, A. Bleier, and H. K. Bowen, in “Adsorption of Dispersants from Non-Aqueous Solutions,” J. Pask and A. Evans, eds., Plenum Press, New York (1981) 121.Google Scholar
  74. P. D. Calvert, et al., Am. Ceram. Soc. Bul., 65 (1986) 669; R. J. Higgins, Ph.D. Thesis, MIT (1990) 138 [only available directly from MET, not from the usual UMI microfilm service].Google Scholar
  75. 52.
    D. R. Lide, Handbook of Chem. & Phys., CRC Press, Boca Raton, FL (1993) 7–29.Google Scholar
  76. 53.
    For example, excellent nonaqueous dispersants are KD-2,-3, and-4 from ICI Co., Wilmington, DE. See J. F. Stansfield, U.S. Patent 3,996,059 (1976) [m.w. of KD-2 is approx. 1700]; A. Topham, U.S. Patent 4,224,212 (1980); E. DeLiso, and A. Bleier, in “Interfacial Phenom. Biotech. Mat’ls. Processing,” Y. Attia, et al., eds., (1988) Elsevier, Amsterdam [analysis of KD-3]; L. Bergstrom, et al., Proc. 11th Riso Sympos. Metlrgy. and Mats. Sci. (1990) 193, published by Riso Natn’l. Lab., Roskilde, Denmark [KD-3]; E. Liden, et al., J. European Ceram. Soc., 7 (1991) 361 [KD-4 in cyclohexane]. reacts with this to yield PVB. SeeCrossRefGoogle Scholar
  77. W. L. Faith, et. al., “Industrial Chemicals,” J. Wiley, New York (1965) 800.Google Scholar
  78. 54.
    M. D. Sacks, et al., Advances in Ceram., 19 (1986) 175 [0.7% Monsanto B-79].Google Scholar
  79. V. L. Richards, J. Am. Ceram. Soc., 72 (1989) 325.CrossRefGoogle Scholar
  80. 55.
    Samukawa, N., et al., Gosei Jushi 36 (1990) 48 (in Japanese) [see Chem. Abstr. 113 (1990) item 28037t).Google Scholar
  81. 56.
    R. E. Johnson, et al., Advances in Ceram., 21 (1987) 323 [see pages 343,346].Google Scholar
  82. 57.
    F. J. Micale, et al., Disc. Faraday Soc., Number 42 (1966) 238.CrossRefGoogle Scholar
  83. 58.
    W. R. Cannon, et al., Advances in Ceram., 19 (1986) 161.Google Scholar
  84. W. R. Cannon, et al., J. Am. Ceram. Soc., 73 (1990) 1312.CrossRefGoogle Scholar
  85. 59.
    A. K. van Helden, et al., J. Colloid and Interface Sci., 81 (1981) 354.CrossRefGoogle Scholar
  86. S Emmett, et al., Colloids and Surfaces, 42 (1989) 139.CrossRefGoogle Scholar
  87. 60.
    F. F. Lange, et al., J. Am. Ceram. Soc., 77 (1994) 922 [UBE E-10 silicon nitride, refluxed in C18 alcohol at 200°C for 2 hrs.].CrossRefGoogle Scholar
  88. 61.
    H. Ishida, et al., Polymer Engrng. and Sci., 18 (1978) 128.CrossRefGoogle Scholar
  89. 62.
    K. Lindqvist and E. Carlstrom, J. Am. Ceram. Soc., 72 (1989) 99.CrossRefGoogle Scholar
  90. 63.
    E. P. Plueddemann, “Silane Coupling Agents,” Plenum Press, New York (1991).Google Scholar
  91. 64.
    A. Kerkar, et al., J. Am. Ceram. Soc., 73 (1990) 2879 (particularly page 2880).CrossRefGoogle Scholar
  92. 66(a).
    Mark Bonneau (Dexter-Hysol Co.) and D. J. Shanefield (AT&T), unpublished work.Google Scholar
  93. 66(b).
    L. T. Manzione, “Plastic Packing of Microelectronic Devices,” Van Nostrand Reinhold, New York (1990) [see particularly pages 87 and 89].Google Scholar
  94. 67.
    P. Boch, et al., Am. Ceram. Soc. Bul., 66 (1987) 1653.Google Scholar
  95. W. R. Cannon, et al., Advances in Ceram., 26 (1989) 525.Google Scholar
  96. H. Yan, W. R. Cannon, and D. J. Shanefield, J. Am. Ceram. Soc., 76 (1993) 166 [with aluminum nitride powder].CrossRefGoogle Scholar
  97. 68.
    K. J. Nilsen, R. E. Riman, and S. C. Danforth, Ceram. Trans., 1A (1988) 469.Google Scholar
  98. 69.
    F. K. van Dijen, et al., J. Eur. Cer. Soc., 5, (1989) 385; K. Drury, M.S. Thesis, Rutgers Univ. (1992).CrossRefGoogle Scholar
  99. 70.
    R. J. Pugh, et al., Colloids and Surfaces, 7 (1983) 183.CrossRefGoogle Scholar
  100. F. M. Fowkes, Advances in Ceram. 21 (1987) 411 [Fig. 3].Google Scholar
  101. 72(a).
    I. Sushumna and E. Ruckenstein, J. Mat’ls. Res. 7 (1992) 2884.CrossRefGoogle Scholar
  102. 72(b).
    L. Berg-strom, C. H. Schilling, and I. A. Aksay, J Am. Ceram. Soc., 75 (1992) 3305 [see particularly page 3307].CrossRefGoogle Scholar
  103. 74.
    T. Sasaki, et al., Japanese Patent 62,278,160 (1987) [see Chem. Abstr. 108 (1988) item 117602n]; R. Gustafsson, et al., Swedish Patent 459,075 (1989)Google Scholar
  104. [see Chem. Abstr. 111 (1989) item 179658f]; F. F. Lange, et al., J. Am. Ceram. Soc., 77 (1994) 922CrossRefGoogle Scholar
  105. [UBE E-10, 60 vol. %, pressure filtered]; E. Carlstrom, D. Chalasani, and D. J. Shanefield, to be published [UBE E-10, 61 vol. %, milled first in a fugitive solvent, used for injection molding].Google Scholar
  106. 75.
    H. Goldschmiedt, “Practical Formulas,” Arco Publishing, New York (1978) 99.Google Scholar
  107. 1.
    T. A. Ring, et al., J. Am. Ceram. Soc., 72 (1989) 1918.CrossRefGoogle Scholar
  108. I. A. Aksay, et al., J. Mat’ls. Res., 9 (1994) 451.CrossRefGoogle Scholar
  109. 2.
    R. O. James, Advances in Ceramics, 21 (1987) 349 [see particularly Fig. 3].Google Scholar
  110. 3.
    A. Karas, T. Kumagai, and W. R. Cannon, Adv’d. Ceram. Mat’ls., 3 (1988) 374.Google Scholar
  111. W. R. Cannon, et al., Advances in Ceram., 26 (1989) 525 [see Fig. 2a].Google Scholar
  112. 4.
    H. Takabe, et al., J. Ceram. Soc. Japan, 100 (1992) 750 [see Fig. 2].CrossRefGoogle Scholar
  113. J. Faisson and R. A. Haber, Ceram. Eng. Sci. Proc, 12 (1991) 106.Google Scholar
  114. 5.
    R. E. Mistier, D. J. Shanefield, and R. B. Runk, page 411 in G. Y. Onoda and L. L. Hench, “Ceramic Processing Before Firing,” J. Wiley, New York (1978) [see Table 30.2 and compare to bottom of Table 30.3].Google Scholar
  115. 6.
    B. C. Matsuddy, et al., Advances in Ceram., 9 (1984) 246.Google Scholar
  116. 8.
    McCutcheon’s Emulsions and Detergents,” McCutcheon’s Publ., Glenn Rock, NJ (1993) [technical data and supplier addresses for hundreds of surfactants]; R. B. McCay, “Technical Applications of Dispersants,” Marcel Dekker, New York (1994).Google Scholar
  117. 9.
    C. Beck and D. J. Shanefield, Am. Ceram. Soc. Bul., 67 (1988) 644. S. M. Marschner, Ph.D. Thesis, Rutgers Univ., (May 1991) pages 42, 51, 59 [available from UMI, Ann Arbor, Michigan]. (See also section 9.4 of this book.)Google Scholar
  118. 10.
    M. J. Rosen, “Surfactants,” J. Wiley, New York (1978); Anon., “The HLB System,” ICI Americas Inc., Wilmington, Del. (1980).Google Scholar
  119. 12.
    A. Roosen, Ceram. Trans., 1B (1988) 675 [see particularly table 3].Google Scholar
  120. 13.
    G. W. Phelps and M. G. McLaren, page 211 in “Ceramic Processing Before Firing,” G. Y. Onoda and L. L. Hench, eds, J. Wiley, New York (1978) [Fig. 17.4]; Anon., Am. Ceram. Soc. Bul., 71 (1992) 185.Google Scholar
  121. W. Kohut, Am. Ceram. Soc. Bul., 71 (1992) 947.Google Scholar
  122. A. B. Corradi, et al., J. Am. Ceram. Soc., 77 (1994) 509.CrossRefGoogle Scholar
  123. 14.
    J. Faisson and R. A. Haber, Ceram. Eng. Sci. Proa, 12 (1991) 106.Google Scholar
  124. 16.
    G. D. Parfitt, “Dispersion of Powders in Liquids,” Elsevier, N. Y (1981) 315.Google Scholar
  125. 17.
    H. van Olphen, “Clay Colloid Chemisty, “ J. Wiley, New York (1977) 167.Google Scholar
  126. J. S. Reed, “Introduction to the Principles of Ceramic Processing,” J. Wiley, New York (1988) 154 [see Fig. 11.1a].Google Scholar
  127. 18.
    A. Foissy, J. Colloid and Interface Sci., 96 (1983) 275.CrossRefGoogle Scholar
  128. J. Cesarano and I. A. Aksay, J. Am. Ceram. Soc., 71 (1988) 1062.CrossRefGoogle Scholar
  129. Z. C. Chen, T. A. Ring, and J. Lemaitre, Ceram. Trans., 22 (1991) 257.Google Scholar
  130. K. Nagata, Ceramic Trans. ‚22 (1991) 335 (see Fig.2).Google Scholar
  131. K. Nagata, Ceramic Trans., 26 (1991) 205 (see Fig.3).Google Scholar
  132. 19.
    A. Bleier, et al., Colloids Surf., 1 (1980) 407.CrossRefGoogle Scholar
  133. 20.
    L. Bergstrom, et al., J. Am. Ceram. Soc., 72 (1989) 103.CrossRefGoogle Scholar
  134. S. G. Malghan, et al., Ceram. Trans., 26 (1992) 38.Google Scholar
  135. J.-F. Wang, R. E. Riman, and D. J. Shanefield, Ceram. Trans., 26 (1992) 240.Google Scholar
  136. 21.
    M. Liphard and W. von Rybinski, Progr. Colloid & Polymer Sci., 77 (1988) 158.CrossRefGoogle Scholar
  137. 22(a).
    R. J. Hunter, “Foundations of Colloid Sci.,” Clarendon Press, Oxford (1987) p. 489.Google Scholar
  138. 22(b).
    J. F. Stansfield, U.S. Pat. 3,996,059 (1976).Google Scholar
  139. 22(c).
    A. Topham, U.S. Pat. 4,224,212 (1980); see also double-asterisk footnote in Chapter 10 [material is similar to KD-3 polyimide ester copolymer, from ICI Co., Wilmington, DE].Google Scholar
  140. 23.
    L. Romo, et al., Disc. Faraday Soc., 42 (1966) 232.CrossRefGoogle Scholar
  141. T. Allen and R. M. Patel, J. Colloid and Interface Sci., 37 (1971) 595.CrossRefGoogle Scholar
  142. A. Doroszkowski, et al., Faraday Discuss’n of Chem. Soc., 65 (1978) 252.CrossRefGoogle Scholar
  143. F. F. Lange, et al., J. Am. Ceram. Soc., 77 (1994) 922.CrossRefGoogle Scholar
  144. 24.
    B. M. Moudgil, et al., Advances in Ceram., 21 (1987) 483 [Fig. 1].Google Scholar
  145. 25.
    R. J. Hunter, “Found’ns of Colloid Sci.,” Clarendon Press, Oxford (1987) p. 489.Google Scholar
  146. R. G. Horn, J. Am. Ceram. Soc., 73 (1990) 1117 [see particularly page 1126].CrossRefGoogle Scholar
  147. 26.
    D. J. Shaw, “Introduction to Colloid Chemistry,” Butterworths, N.Y. (1980) p.208.Google Scholar
  148. I. Sushumna and E. Ruckenstein, J. Mat’ls. Res. 7 (1992) 2884 (see especially page 2888].CrossRefGoogle Scholar
  149. 27.
    J. Cesarano and I. A. Aksay, J. Am. Ceram. Soc., 71 (1988) 1062 [at 50 volume % solids loading of a half micron powder, see Fig.5].CrossRefGoogle Scholar
  150. 29.
    I. A. Aksay, Ceram. Int’l., 17 (1991) 267 [see particularly page 272].CrossRefGoogle Scholar
  151. 30.
    A. Doroszkowski, et al., Faraday Discuss’n of Chem. Soc., 65 (1978) 252.CrossRefGoogle Scholar
  152. T. K. Yin and I. A. Aksay, Ceram. Trans., 1B (1988) 654.Google Scholar
  153. 31.
    I. A. Aksay, et al., Ceram. Trans., 1 (1988) 654Google Scholar
  154. 32.
    W. A. Ducker, Z. Xu, D. R. Clarke, and J. N. Israelachvili, J. Am. Ceram. Soc., 77 (1994) 437.CrossRefGoogle Scholar
  155. J. C. Chang, F. F. Lange, and D. S. Pearson, J. Am. Ceram. Soc., 77 (1994) 19.CrossRefGoogle Scholar
  156. 33.
    A. J. Ruys, et al., Am. Ceram. Soc. Bul., 69 (1990) 828.Google Scholar
  157. 34.
    J. C. Le Bell, et al., J. Colloid & Interface Sci., 55 (1976) 60.CrossRefGoogle Scholar
  158. 35.
    E. Carlstrom, et al., Cer. Trans. 2(1989) 175.Google Scholar
  159. 36.
    C. W. A. Bromley, Colloid Surf., 17 (1986) 1.CrossRefGoogle Scholar
  160. 37.
    H. van Olphen, “Clay Colloid Chemisty, “ J. Wiley, New York (1977) 167.Google Scholar
  161. 38.
    W. R. Cannon, et al., Advances in Ceram., 26 (1989) 525.Google Scholar
  162. R. Moreno, Am. Ceram. Soc. Bul., 71 (1992) 1521.Google Scholar
  163. 39.
    R. I. Feigin and D. H. Napper, J. Colloid and Interface Sci., 75 (1980) 525.CrossRefGoogle Scholar
  164. R. J. Hunter, “Foundations of Colloid Sci.,” Clarendon Press, Oxford, UK (1987) 483; M. Yasrebi, Ph.D. Thesis, Univ. of Washington (1988) [available from UMI, Ann Arbor, Michigan].Google Scholar
  165. S. J. Patel and M. Tirrell, Ann. Rev. Phys. Chem., 40 (1989) 597.CrossRefGoogle Scholar
  166. 40.
    R. Moreno, Am. Ceram. Soc. Bul., 71 (1992) 1521 [see particularly p. 1527].Google Scholar
  167. 41.
    K. Nagata, J. Ceram. Soc. Japan, 100 (1992) 1271, in Japanese [see Fig. 6].CrossRefGoogle Scholar
  168. 42.
    J. A. Hersey, Powder Technol., 11 (1975) 41.CrossRefGoogle Scholar
  169. A. Garg and E. Matijevic, Langmuir, 4 (1988) 38.CrossRefGoogle Scholar
  170. E. Liden, et al., M. Persson, E. Carlstrom, and R. Carlsson, J. Am. Ceram. Soc., 74 (1991) 1335; E. Liden, Ph.D. Thesis, Chalmers University of Technology, Goteborg, Sweden (1994) 23 and 51.CrossRefGoogle Scholar
  171. 43.
    R. G. Horn, J. Am. Ceram. Soc., 73 (1990) 1117 [theory].CrossRefGoogle Scholar
  172. S. S. Patel, Annual. Rev. Phys. Chem., 40 (1989) 597 [experiments].CrossRefGoogle Scholar
  173. 44.
    D. J. Shanefield and R. E. Mistier, Am. Ceram. Soc. Bul., 53 (1974) 416.Google Scholar
  174. 45.
    W. R. Cannon and R. Becker, Advances in Ceram., 26 (1989) 525.Google Scholar
  175. 46.
    K. E. Howard, et al., J. Am. Ceram. Soc., 73 (1990) 2543.CrossRefGoogle Scholar
  176. 47.
    X. Chen, D. J. Shanefield, and D. E. Niesz, AmCeram. Soc. Bul., 69 (1990) 496; X. Chen, “Pressureless Sintering with Yttria and Alumina Additives,” M.S. Thesis, Rutgers University (1991).Google Scholar
  177. 48.
    A. Stanzeski, D. W. Scott, and D. J. Shanefield, Am. Ceram. Bul., 72 (1993) 218.Google Scholar
  178. 49.
    M. J. Edirisinghe, et al., Ceram. Trans. 26 (1992) 165.Google Scholar
  179. 50.
    E. S. Tormtj, L. M. Robinson, W. R. Cannon, A. Bleier, and H. K. Bowen, in “Adsorption of Dispersants from Non-Aqueous Solutions,” J. Pask and A. Evans, eds., Plenum Press, New York (1981) 121.Google Scholar
  180. P. D. Calvert, et al., Am. Ceram. Soc. Bul., 65 (1986) 669; R. J. Higgins, Ph.D. Thesis, MIT (1990) 138 [only available directly from MET, not from the usual UMI microfilm service].Google Scholar
  181. 52.
    D. R. Lide, Handbook of Chem. & Phys., CRC Press, Boca Raton, FL (1993) 7–29.Google Scholar
  182. 53.
    For example, excellent nonaqueous dispersants are KD-2,-3, and-4 from ICI Co., Wilmington, DE. See J. F. Stansfield, U.S. Patent 3,996,059 (1976) [m.w. of KD-2 is approx. 1700]; A. Topham, U.S. Patent 4,224,212 (1980); E. DeLiso, and A. Bleier, in “Interfacial Phenom. Biotech. Mat’ls. Processing,” Y. Attia, et al., eds., (1988) Elsevier, Amsterdam [analysis of KD-3]; L. Bergstrom, et al., Proc. 11th Riso Sympos. Metlrgy. and Mats. Sci. (1990) 193, published by Riso Natn’l. Lab., Roskilde, Denmark [KD-3]; E. Liden, et al., J. European Ceram. Soc., 7 (1991) 361 [KD-4 in cyclohexane]. reacts with this to yield PVB. SeeCrossRefGoogle Scholar
  183. W. L. Faith, et. al., “Industrial Chemicals,” J. Wiley, New York (1965) 800.Google Scholar
  184. 54.
    M. D. Sacks, et al., Advances in Ceram., 19 (1986) 175 [0.7% Monsanto B-79].Google Scholar
  185. V. L. Richards, J. Am. Ceram. Soc., 72 (1989) 325.CrossRefGoogle Scholar
  186. 55.
    Samukawa, N., et al., Gosei Jushi 36 (1990) 48 (in Japanese) [see Chem. Abstr. 113 (1990) item 28037t).Google Scholar
  187. 56.
    R. E. Johnson, et al., Advances in Ceram., 21 (1987) 323 [see pages 343,346].Google Scholar
  188. 57.
    F. J. Micale, et al., Disc. Faraday Soc., Number 42 (1966) 238.CrossRefGoogle Scholar
  189. 58.
    W. R. Cannon, et al., Advances in Ceram., 19 (1986) 161.Google Scholar
  190. W. R. Cannon, et al., J. Am. Ceram. Soc., 73 (1990) 1312.CrossRefGoogle Scholar
  191. 59.
    A. K. van Helden, et al., J. Colloid and Interface Sci., 81 (1981) 354.CrossRefGoogle Scholar
  192. S Emmett, et al., Colloids and Surfaces, 42 (1989) 139.CrossRefGoogle Scholar
  193. 60.
    F. F. Lange, et al., J. Am. Ceram. Soc., 77 (1994) 922 [UBE E-10 silicon nitride, refluxed in C18 alcohol at 200°C for 2 hrs.].CrossRefGoogle Scholar
  194. 61.
    H. Ishida, et al., Polymer Engrng. and Sci., 18 (1978) 128.CrossRefGoogle Scholar
  195. 62.
    K. Lindqvist and E. Carlstrom, J. Am. Ceram. Soc., 72 (1989) 99.CrossRefGoogle Scholar
  196. 63.
    E. P. Plueddemann, “Silane Coupling Agents,” Plenum Press, New York (1991).Google Scholar
  197. 64.
    A. Kerkar, et al., J. Am. Ceram. Soc., 73 (1990) 2879 (particularly page 2880).CrossRefGoogle Scholar
  198. 66(a).
    Mark Bonneau (Dexter-Hysol Co.) and D. J. Shanefield (AT&T), unpublished work.Google Scholar
  199. 66(b).
    L. T. Manzione, “Plastic Packing of Microelectronic Devices,” Van Nostrand Reinhold, New York (1990) [see particularly pages 87 and 89].Google Scholar
  200. 67.
    P. Boch, et al., Am. Ceram. Soc. Bul., 66 (1987) 1653.Google Scholar
  201. W. R. Cannon, et al., Advances in Ceram., 26 (1989) 525.Google Scholar
  202. H. Yan, W. R. Cannon, and D. J. Shanefield, J. Am. Ceram. Soc., 76 (1993) 166 [with aluminum nitride powder].CrossRefGoogle Scholar
  203. 68.
    K. J. Nilsen, R. E. Riman, and S. C. Danforth, Ceram. Trans., 1A (1988) 469.Google Scholar
  204. 69.
    F. K. van Dijen, et al., J. Eur. Cer. Soc., 5, (1989) 385; K. Drury, M.S. Thesis, Rutgers Univ. (1992).CrossRefGoogle Scholar
  205. 70.
    R. J. Pugh, et al., Colloids and Surfaces, 7 (1983) 183.CrossRefGoogle Scholar
  206. F. M. Fowkes, Advances in Ceram. 21 (1987) 411 [Fig. 3].Google Scholar
  207. 72(a).
    I. Sushumna and E. Ruckenstein, J. Mat’ls. Res. 7 (1992) 2884.CrossRefGoogle Scholar
  208. 72(b).
    L. Berg-strom, C. H. Schilling, and I. A. Aksay, J Am. Ceram. Soc., 75 (1992) 3305 [see particularly page 3307].CrossRefGoogle Scholar
  209. 74.
    T. Sasaki, et al., Japanese Patent 62,278,160 (1987) [see Chem. Abstr. 108 (1988) item 117602n]; R. Gustafsson, et al., Swedish Patent 459,075 (1989) [see Chem. Abstr. 111 (1989) item 179658f]; F. F. Lange, et al., J. Am. Ceram. Soc., 77 (1994) 922 [UBE E-10, 60 vol. %, pressure filtered]; E. Carlstrom, D. Chalasani, and D. J. Shanefield, to be published [UBE E-10, 61 vol. %, milled first in a fugitive solvent, used for injection molding].CrossRefGoogle Scholar
  210. 75.
    H. Goldschmiedt, “Practical Formulas,” Arco Publishing, New York (1978) 99.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Daniel J. Shanefield
    • 1
  1. 1.Rutgers UniversityUSA

Personalised recommendations