Advertisement

Solvents

  • Daniel J. Shanefield

Abstract

In a few ceramic processes such as aqueous clay brickmaking, the water might be called the “solvent,” but it does not really need to dissolve anything and only has to fluidize the clay powder during shaping. The fineness of the powder, plus its tendency to hydrogen bond to the water, provides the necessary pseudoplasticity for shaping. Some ultrafine components of the clay are nearly at molecular sizes and can act as the dispersant. (More about that will be discussed in the chapter on dispersants.) Not much strength is needed in brickmaking, since the shape is simple and inherently sturdy.

Keywords

Methyl Ethyl Ketone Propylene Carbonate Aluminum Nitride Asbestos Fiber Ceramic Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Barton, “Handbook of Solubility Parameters,” CRC Press, Boca Raton, FL (1983).Google Scholar
  2. 2.
    D.J. Shanefield, J. Inorg. & Nuclear Chem., 24 (1962) 1014.CrossRefGoogle Scholar
  3. 3.
    K. Starke, J. Inorg. & Nuclear Chem., 26 (1964) 1125.CrossRefGoogle Scholar
  4. 4.
    D. J. Shanefield, Matls. Res. Soc. Proc., 40 (1985) 69.CrossRefGoogle Scholar
  5. D. J. Shanefield, Advances in Ceram., 19 (1986) 155.Google Scholar
  6. P. Nahass, et al., Ceram. Trans., 15 (1989) 355.Google Scholar
  7. R. G. Horn, J. Am. Ceram. Soc., 73 (1990) 1117 [see page 1128, water effects].CrossRefGoogle Scholar
  8. 5.
    M. J. Edirisinghe, et al., Ceram. Trans. 26 (1992) 165.Google Scholar
  9. I. Sushumna and E. Ruckenstein, J. Mat’ls. Res. 7 (1992) 2884.CrossRefGoogle Scholar
  10. 6.
    H. J. Cesarano and I. A. Aksay, J. Am. Ceram. Soc., 71 (1988) 1062.CrossRefGoogle Scholar
  11. Y. Hirata, et al., J. Ceram. Soc. Japan, 100 (1992) 983.CrossRefGoogle Scholar
  12. 7.
    F. F. Lange and K.T. Miller, Am. Ceram. Soc Bul., 66 (1987) 1498.Google Scholar
  13. B. V. Velamakanni, et al., J. Am. Ceram. Soc., 74 (1991) 166.CrossRefGoogle Scholar
  14. 8.
    See chapter by Mistier, Shanefield, and Runk, page 411, in “Ceramic Processing Before Firing,” G. Y. Onoda and L. L. Hench, eds., J. Wiley, New York (1978) [particularly Figures 30.7 through 30.11].Google Scholar
  15. 9.
    B.N. Fogelson and D. J. Shanefield, Am. Ceram. Bul., 69 (1990) 541.Google Scholar
  16. A. Franco, D. J. Shanefield, and L. C. Klein, Am. Ceram. Bul., 72 (1993) 251 [TEOS was reacted with acetic anhydride in propylene carbonate solvent to make silica].Google Scholar
  17. 10.
    H. W. Stetson and W. J. Gyurk, U.S. Pat. 3,698,923 (1972) and 3,780, 150 (′73); D. J. Shanefield and R. E. Mistier, Am. Ceram. Soc. Bul., 53 (1974) 416, 564.Google Scholar
  18. 11.
    J. Josephson, Environm. Sci. & Tech., 27 (1993) 1466.Google Scholar
  19. 17.
    C. C. Travis and S. T. Hester, Environm. Sci. & Tech., 25 (1991) 815 [see p. 816].Google Scholar
  20. 22.
    J. C. Chuang, et al., Environ. Sci. and Tech., 26 (1992) 999.CrossRefGoogle Scholar
  21. 23.
    N. I. Sax, et al., “Dangerous Properties of Industrial Materials,” Van Nostrand Reinhold, New York (1993); Anon., “The Sigma-Aldrich Library of Chemical Safety Data,” Aldrich Chemical Co., Milwaukee, WI (1990).Google Scholar
  22. 24.
    B. N. Ames, Science, 221 (1983) 1256; B. N. Ames, ChemTech (October 1989) 590.CrossRefGoogle Scholar
  23. 25.
    G. W. Gribble, Environ. Sci. and Tech., 28 (1994) 310A.Google Scholar
  24. 26.
    J. C. Bailar, New England J. Med., 314 (1986) 1226; L. G. Lutzker, ChemTech (July 1988) 396; E. W. Volkmann, Chem. & Engrng. News, (February 22, 1988) 2.CrossRefGoogle Scholar
  25. B. N. Ames, in “Important Advances in Oncology, 1989,” V. T. DeVita et al., Eds., Lippincott, Philadelphia (1989).Google Scholar
  26. 29.
    W. H. Beyer, CRC Standard Mathematical Tables,” CRC Press, Boca Raton, FL (1987) 583.Google Scholar
  27. 34.
    D. R. Lide, Handbook of Chem. & Phys., CRC Press, Boston (1993).Google Scholar
  28. 35.
    T. Ceding, Environ. Sci. and Tech., 26 (1992) 1474.Google Scholar
  29. D. J. Shanefield, Environ. Sci. and Tech., 26 (1992) 1857.CrossRefGoogle Scholar
  30. 36.
    B. Hileman, Chem. & Engrng. News (April 27, 1992) 7 [see the parallel CO2curves on p. 16]; J. Jouzel, et al., Nature (London), 329 (1987) 403.CrossRefGoogle Scholar
  31. J. M. Barola, et al., Nature (London), 329 (1987) 408.CrossRefGoogle Scholar
  32. 38.
    R. S. Lindzen, Science (1990) 249; R. S. Lindzen, Environ. Sci. and Tech., 24 (1991) 424; K. D, Breyer, Chem. & Engrng. News, (June 3, 1991) 37.CrossRefGoogle Scholar
  33. 42.
    N. E. Skakkebaek, Brit. Med. J., 305 (1992) 609; B. Hileman, Chem. & Engrng. News, (September 21, 1992)5; J. Rennie, Scientific American (September 1993) 34; J. Raloff, Science News, 145 (January 22, 1994) 56.CrossRefGoogle Scholar
  34. 45.
    C. Maltoni, Environ. Sci. & Tech., 28 (1994) 306A.CrossRefGoogle Scholar
  35. 46.
    M. Egashira, et al., J. Mat’l. Sci. Letters, 10 (1991) 994.CrossRefGoogle Scholar
  36. T. J. Mroz, Am. Ceram. Bul., 71 (1992) 782; H. Gorter, et al., “Third Euro-Ceramics Proa, Vol. 1,” Faenza Editrice, Madrid (1993) 617; E. A. Groat and T. J. Mroz, Ceram. Industry (March 1993) 34.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Daniel J. Shanefield
    • 1
  1. 1.Rutgers UniversityUSA

Personalised recommendations