Optical Sensors with Metal Ions

  • D. Max Roundhill
Part of the Modern Inorganic Chemistry book series (MICE)


Optical sensors are materials that potentially have a wide range of uses and applications in both medical and environmental situations among others. Optical sensors can be designed to make use of changes in the wavelengths or extinction coefficients of the sensing material. Alternately for emissive materials, it is possible to use changes in the emission wavelengths or intensities to monitor the presence or absence of chemical species. These chemical species can be cations, anions, or organic molecules. For a sensor to be useful it is necessary for the device to be selective for the specific chemical species of interest, and that the change in the property of the sensing material be responsive in a consistent manner to changes in concentration of the chemical species being detected or analyzed.1–8 This chapter is focused on optical sensors incorporating metals, and one feature of such sensors is their use to detect metal ions in solutions. For the metal binding site in such a sensor it is usual to employ chelate or macrocyclic ligands because they can be tailored to selectively complex a variety of different metal ions. For the detection of uncharged molecules a host will usually be selected such that its cavity matches the shape and size of the chosen guest. More recently metal-containing optical sensors are being developed that can function as anion selective receptors, and again the receptor must be specifically designed to meet the requirements of the individual anions.9


Crown Ether Optical Sensor Lone Electron Pair Photoinduced Electron Transfer Fluorescent Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. W. Czarnik, ed., Fluorescent Chemosensors for Ion and Molecule Recognition, ACS Sympos. Ser., No. 538, (1993).Google Scholar
  2. 2.
    D. Schuetzle, R. Hammerle, and J. W. Butler, eds., Fundamentals and Applications of Chemical Sensors, ACS Sympos. Ser., No. 309 (1986).Google Scholar
  3. 3.
    T. E. Edmonds, Chemical Sensors, Chapman and Hall, New York (1988).Google Scholar
  4. 4.
    R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, and K. R. A. S. Sandanayake, Chem. Soc. Rev. 21, 187 (1992).CrossRefGoogle Scholar
  5. 5.
    A. P. de Silva and S. A. de Silva, J. Chem. Soc., Chem. Commun. 1709 (1986).Google Scholar
  6. 6.
    L. Fabbrizzi, and A. Poggi, Chem. Soc. Rev. 24, 197 (1995).CrossRefGoogle Scholar
  7. 7.
    J. Janata and A. Bezegh, Anal. Chem. 60, 62R (1988).CrossRefGoogle Scholar
  8. 8.
    J Janata, Anal. Chem. 62, 33R (1990).CrossRefGoogle Scholar
  9. 9.
    B. Dietrich, Pure Appl. Chem. 65, 1457 (1993).CrossRefGoogle Scholar
  10. 10.
    R. Narayanaswamy, Anal. Proc. 22, 294 (1985).CrossRefGoogle Scholar
  11. 11.
    A. W. Czamik, Acc. Chem. Res. 27, 302 (1994).CrossRefGoogle Scholar
  12. 12.
    D. M. Roundhill, Photochemistry and Photophysics of Metal Complexes, Plenum Press, New York (1994).Google Scholar
  13. 13.
    H. Hennig and D. Rehorek, Photochemische and Photokatalytische Reaktionen von Koordinationsverbindungen, Akademie-Verlag, Berlin (1987).Google Scholar
  14. 14.
    Q. Zhou and T. M. Swager, J. Am. Chem. Soc. 117, 7017 (1995).CrossRefGoogle Scholar
  15. 15.
    W. R. Seitz and D. M. Hercules, Anal. Chem. 44, 2143 (1972).CrossRefGoogle Scholar
  16. 16.
    C. A. Chang and H. H. Patterson, Anal. Chem. 52, 653 (1980).CrossRefGoogle Scholar
  17. 17.
    R. Escobar, Q. Lin, A. Guiraum, E E. de la Rosa, Analyst 118, 643 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    E. Goppelsröder, J. Prakt. Chem. 101, 408 (1867).CrossRefGoogle Scholar
  19. 19.
    M. Kodama and E. Kimura, J. Chem. Soc., Dalton Trans. 325 (1979).Google Scholar
  20. 20.
    M. Huston, K. Haider, and A. W Czamik, J. Am. Chem. Soc. 110, 4460 (1988).CrossRefGoogle Scholar
  21. 21.
    S. Y. Hong and A. W. Czamik, J. Am. Chem. Soc. 115, 3330 (1993).CrossRefGoogle Scholar
  22. 22.
    B. Valeur, J. Bourson, J. Pouget, M. Kaschke, and N. P. Ernsting, J. Phys. Chem. 96, 6545 (1992).CrossRefGoogle Scholar
  23. 23.
    B. Valeur, J. Mugnier, J. Pouget, J. Bourson, and E Santi, J. Phys. Chem. 93, 6073 (1989).CrossRefGoogle Scholar
  24. 24.
    M.-Y. Chae and A. W. Czamik, J. Fluorescence 2, 225 (1992).CrossRefGoogle Scholar
  25. 25.
    V. Goulle, A. Harriman and J.-M. Lehn, J. Chem. Soc., Chem. Commun. 1034 (1993).Google Scholar
  26. 26.
    E. Amouyal, A. Hamsi, J.-C. Chambron, and J.-P. Sauvage, J. Chem. Soc., Dalton Trans. 1841 (1990).Google Scholar
  27. 27.
    Y. Jenkins, A. E. Friedman, N. J. Turro and J. K. Barton, Biochemistry 31, 10809 (1992).CrossRefGoogle Scholar
  28. 28.
    J. Fees, W. Kaim, M. Moscherosch, W Mathis, J. Klimia, M. Krejcik, and S. Zâlis„ Inorg. Chem. 32, 166 (1993).CrossRefGoogle Scholar
  29. 29.
    E. Sabatani, H. D. Nikol, H. B. Gray, and E C. Anson, J. Am. Chem. Soc. 118, 1158 (1996).CrossRefGoogle Scholar
  30. 30.
    C. D. Gutsche, Calixarnes, Royal Society of Chemistry, Cambridge, UK (1989).Google Scholar
  31. 31.
    Pérez-Jiménez, S. J. Harris, and D. Diamond, J. Chem. Soc., Chem. Commun. 480 (1993).Google Scholar
  32. 32.
    T. Jin, K. Ichikawa, and T. Koyama, J. Chem. Soc., Chem. Commun. 499 (1992).Google Scholar
  33. 33.
    I. Aoki, T. Sakaki, and S. Shinkai, J. Chem. Soc., Chem. Commun. 730 (1992).Google Scholar
  34. 34.
    Y. Kubo, S.-I. Hamaguchi, A. Niimi, K. Yoshida, and S. Tokita, J. Chem. Soc., Chem. Commun. 305 (1993).Google Scholar
  35. 35.
    P. D. Beer, P. A. Gale, D. Hesek, M. Shade, and E Szemes, Abstr. 3rd Int. Calixarene Conf., Abstr. LI-8, Fort Worth, TX (May 1995).Google Scholar
  36. 36.
    P D. Beer, Z. Chen, A. J. Goulden, A. Grieve, D. Hesek, E Szemes, and J. Wear, J Chem. Soc., Chem. Commun. 1269 (1994).Google Scholar
  37. 37.
    D. M. Roundhill, Progr. Inorg. Chem. 43, 533 (1995).CrossRefGoogle Scholar
  38. 38.
    J.-C. G. Bünzli, P. Froidevaux, and J. M. Harrowfield, Inorg. Chem. 32, 3306 (1993).CrossRefGoogle Scholar
  39. 39.
    P. Froidevaux and J.-C. G. Bünzli, J. Phys. Chem. 98, 532 (1994).CrossRefGoogle Scholar
  40. 40.
    J.-C. G. Bünzli, P. Froidevaux, and C. Piguet, New J. Chem. 19, 661 (1995).Google Scholar
  41. 41.
    N. Sabbatini, M. Guardigli, A. Mecati, V. Balzani, R. Ungarn, E. Ghidini, A. Casnati, and A. Poshini, J. Chem. Soc., Chem. Commun. 878 (1990).Google Scholar
  42. 42.
    M. E Hazenkamp, G. Blassse, N. Sabbatini, and R. Ungaro, Inorg. Chim. Acta 172, 93 (1990).CrossRefGoogle Scholar
  43. 43.
    E. M. Georgiev, J. Clymire, G. L. McPherson, and D. M. Roundhill, Inorg. Chim. Acta 227, 93 (1994).CrossRefGoogle Scholar
  44. 44.
    N. Sato and S. Shinkai, Workshop on Calixarenes and Related Compounds, Abstr. PS/B-I3, Fukuoka, Japan (1993).Google Scholar
  45. 45.
    D. H. Busch, Chem. Rev. 93, 847 (1993).CrossRefGoogle Scholar
  46. 46.
    M.-Y. Chae, X. M. Cherian, and A. W. Czarnik, J. Org . Chem. 58, 5797 (1993).CrossRefGoogle Scholar
  47. 47.
    G. de Santis, L. Fabbrizzi, M. Licchelli, C. Mangano, and D. Sacchi, Inorg. Chem. 34, 3581 (1995).CrossRefGoogle Scholar
  48. 48.
    E. U. Akkaya, M. E. Huston, and A. W Czarnik, J. Am. Chem. Soc. 112, 3590 (1990).CrossRefGoogle Scholar
  49. 49.
    M. E. Huston, C. Engleman, and A. W. Czarnik, J Am. Chem. Soc. 112, 7054 (1990).CrossRefGoogle Scholar
  50. 50.
    M. Gubelmann, A. Harriman, J.-M. Lehn, and J. L. Sessler, J. Chem. Soc., Chem. Commun. 77 (1988).Google Scholar
  51. 51.
    L. R. Sousa and J. M. Larson, J. Am. Chem. Soc. 99, 307 (1977).CrossRefGoogle Scholar
  52. 52.
    J. M. Larson and L. R. Sousa, J. Am. Chem. Soc. 100, 1943 (1978).CrossRefGoogle Scholar
  53. 53.
    L. R. Sousa and B. Son, T. E. T.ehearne, R. W Stevenson, S. J. Ganion, B. E. Beeson, S. Barnell, T. E. Mabry, M. Yao, C. Chakrabarty, P. L. Bock, C. C. Yoder, and S. Pope, ACS Sympos. Ser. 538, 10 (1993).Google Scholar
  54. 54.
    A. P. de Silva and K. R. A. S. Sandanayake, Angew Chem.., Int. Ed. Engl. 29, 1173 (1990).CrossRefGoogle Scholar
  55. 55.
    H. Bouas-Laurent, A. Castellan, M. Daney, J.-P. Desvergne, G. Guinand, P. Marsau, and M.-H. Riffaud, J. Am. Chem. Soc. 108, 315 (1986).CrossRefGoogle Scholar
  56. 56.
    F. Fages, J.-P. Desvergne, H. Bouas-Laurent, J.-M. Lehn, J. P. Konopelski, P. Marsau, and Y. Barrans,J.. Chem. Soc., Chem. Commun. 655 (1990).Google Scholar
  57. 57.
    A. P. de Silva, H. Q. N. Gunaratne, K. R. A. S. Sandanayake, Tretahedron Lett. 31, 5193 (1990).CrossRefGoogle Scholar
  58. 58.
    S. Ghosh, M. Petrin, A. H. Maki, and L. A. Sousa, J. Chem. Phys. 87, 4315 (1987).ADSCrossRefGoogle Scholar
  59. 59.
    R. Y. Tsien, Annu. Rev. Biophys. Bioeng. 12, 94 (1983).Google Scholar
  60. 60.
    A. Minta and R. Y. Tsien, I Biot. Chem. 264, 19449 (1989).Google Scholar
  61. 61.
    D. Masilamani and M. E. Lucas, ACS Sympos. Ser. 538, 162 (1993).CrossRefGoogle Scholar
  62. 62.
    R. Y. Tsien, Biochemistry 19, 2396 (1980).CrossRefGoogle Scholar
  63. 63.
    C. R. Schauer and O. P. Anderson, J. Am. Chem. Soc. 109, 3646 (1987).CrossRefGoogle Scholar
  64. 64.
    C. K. Schauer and O. P. Anderson, Inorg. Chem. 27, 3118 (1988).CrossRefGoogle Scholar
  65. 65.
    G. Grynkiewicz, M. Poenie, and R. Y. Tsien, I Biot. Chem. 260, 3440 (1985).Google Scholar
  66. 66.
    D. M. O’Malley, S. M. Lu, W. Guido, and P. R. Adams, Neuroscience 18, 14 (1992).Google Scholar
  67. 67.
    S. Gilroy and R. L. Jones, Proc. Natl. Acad. Sci. U.S.A. 89, 3591 (1992).ADSCrossRefGoogle Scholar
  68. 68.
    G. W. Walklup and B. Imperali, J. Am. Chem. Soc. 118, 3053 (1996).CrossRefGoogle Scholar
  69. 69.
    H. A. Godwin and J. M. Berg, J. Am. Chem. Soc. 118, 6514 (1996).CrossRefGoogle Scholar
  70. 70.
    J. M. Berg, Acc. Chem. Res. 28, 14 (1995).CrossRefGoogle Scholar
  71. 71.
    B. A. Krizek, D. L. Merkte, and J. M. Berg, Inorg. Chem. 32, 937 (1993).CrossRefGoogle Scholar
  72. 72.
    P. S. Eis, and J. R. Lakowiez, Biochemistry 32, 7981 (1993).CrossRefGoogle Scholar
  73. 73.
    R. B. Thompson and E. R. Jones, Anal. Chem. 65, 730 (1993).CrossRefGoogle Scholar
  74. 74.
    R. B. Thompson and M. W. Patchan, Anal. Biochem. 227, 123 (1995).CrossRefGoogle Scholar
  75. 75.
    N. J. Wilmott, J. N. Miller, and J. E Tyson, Analyst 109, 343 (1984).ADSCrossRefGoogle Scholar
  76. 76.
    J. -C. Bünzli and J.-M. Pfefferlé, Helv. Chim. Acta 77, 323 (1994).CrossRefGoogle Scholar
  77. 77.
    A. W. Vames, R. B. Dodson, and W. L. Wehry, J. Am. Chem. Soc. 94, 946 (1972).CrossRefGoogle Scholar
  78. 78.
    G. Weber, J. Biochem. 47, 144 (1950).Google Scholar
  79. 79.
    M. Cais, S. Dani, Y. Eden, O. Gandolfi, M. Horn, E. E. Isaacs, Y. Josephy, Y. Saar, E. Slovin, and L. Snarsky, Nature 270, 534 (1977).ADSCrossRefGoogle Scholar
  80. 80.
    J. I. Peterson and G. G. Vurek, Science 224, 123 (1984).ADSCrossRefGoogle Scholar
  81. 81.
    W. R. Seitz, Anal. Chem. 56, 16A (1984).Google Scholar
  82. 82.
    R. W. Wagner and J. S. Lindsey, J. Am. Chem. Soc. 116, 9759 (1994).CrossRefGoogle Scholar
  83. 83.
    S. M. Barrard and D. R. Walt, Science 251, 927 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • D. Max Roundhill
    • 1
  1. 1.Department of Chemistry and BiochemistryTexas Tech UniversityLubbockUSA

Personalised recommendations