Photoluminescence of Inorganic Semiconductors for Chemical Sensor Applications

  • Minh C. Ko
  • Gerald J. Meyer
Part of the Modern Inorganic Chemistry book series (MICE)


Over the last few decades there has been a remarkable growth in applications of chemical sensors. This growth stems from the increased need for sensitive and selective sensors in many technological aspects of life such as robotics, automation, enviromental science, information technology, and medicine.1 Semiconductor-based sensors and photoluminescent sensors have attracted much attention in this regard.2,3 The known electronic properties of semiconductor materials and the contactless nature of photoluminescence (PL) spectroscopy make inorganic semiconductors an attractive approach for chemical sensing.


Semiconductor Surface Edge Emission Excited State Lifetime Inorganic Semiconductor Surface Recombination Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. (a)
    J. Jinata, M. Josowicz, and D. De Vaney, Anal. Chem 66 207R (1994) and references cited thereinGoogle Scholar
  2. (b).
    J. Jinata, Anal. Chem. 64, 196R (1992)CrossRefGoogle Scholar
  3. (c).
    S. Middelhoek, A. Bellekom, U. Dauderstadt, P. French, S. Hout, W. Kinat, E. Riedijk, and M. Vellekoop, Meas. Sci. Technol. 6, 1641 (1995)ADSCrossRefGoogle Scholar
  4. (d).
    M. Collison and M. Meyerhoff, Anal. Chem. 62, 425A (1990).Google Scholar
  5. 2. (a)
    J. Turner, ed., Proceedings of the Symposium on Chemical Sensors, pp. 87–89, The Electrochemical Society, New Jersey (1987)Google Scholar
  6. (b).
    G. A. Junter, Electrochemical Detection Techniques in the Applied Sciences, Ellis Horwood, Chichester, New York (1988).Google Scholar
  7. 3. (a)
    J. R. Lakowicz, ed., Advances in Fluorescence Sensing Technology II,Proc. SPIE 2388 (1995) and references cited therein;Google Scholar
  8. (b).
    J. R. Lakowicz, Topics in Fluorescence Spectroscopy, Volume 4: Probe Design and Chemical Sensing, Plenum Press, New York (1994);Google Scholar
  9. (c).
    O. S. Wolfbeis, ed., Fiber Optic Chemical Sensors and Biosensors, CRC Press, Boca Raton (1991);Google Scholar
  10. (d).
    A. W. Czarnick, ed., Fluorescent Chemosensors for Ion and Molecule Recognition, American Chemical Society, Washington, DC (1993).Google Scholar
  11. 4.(a)
    a) P. A. Cox, The Electronic Structure and Chemistry of Solids, Oxford University Press, New York (1987);Google Scholar
  12. (b).
    C. Keitel, Introduction to Solid State Physics,5th edn., Chapter 2, Wiley, New York;Google Scholar
  13. (c).
    S. L. Altmann, Band Theory of Metals, Pergamon Press, New York (1970);Google Scholar
  14. (d).
    G. Burns, Solid State Physics, Academic Press, New York (1985).Google Scholar
  15. 5.
    S. M. Sze, Physics of Semiconductors Devices, Wiley, New York (1981).Google Scholar
  16. 6.
    A. J. Bard, A. B. Bocarsly, E- E E. Fan, E. G. Walton, and M. S. Wrighton, J. Am. Chem. Soc. 102, 3671 (1980).CrossRefGoogle Scholar
  17. 7.
    J. I. Pankove, Optical Processes in Semiconductors, Dover, New York (1971).Google Scholar
  18. 8.
    D. W. Bahnemann, C. Kormann, and M. R. Hoffinan, J. Phys. Chem. 91, 3789 (1987).CrossRefGoogle Scholar
  19. 9.
    A. B. Ellis, in Chemistry and Structure at Interfaces: New Laser and Optical Techniques, R. B. Hall ed., Chapter 6, Deerfield Beach, Florida (1986).Google Scholar
  20. 10.
    K. Mettler, Appl. Phys. 12, 75 (1977).ADSCrossRefGoogle Scholar
  21. 11.
    R. Kohlrausch, Annalen 5, 430 (1847).Google Scholar
  22. 12.
    G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1971).CrossRefGoogle Scholar
  23. 13.
    R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53, 958 (1984).ADSCrossRefGoogle Scholar
  24. 14.
    H. Scher, M. F. Shlesinger, and J. T. Bendier, Physics Today 44, 26 (1991).ADSCrossRefGoogle Scholar
  25. 15.
    M. E Shlesinger and E. W. Montroll, Proc. Natl. Acad. Sci. U.S.A. 81, 1280 (1984).MathSciNetADSCrossRefGoogle Scholar
  26. 16. (a)
    D. R. James, Y. Liu, P. De Mayo, and W. R. Ware, Chem. Phys. Lett. 120, 460 (1985);Google Scholar
  27. (b).
    W. R. Ware, Photochemistry in Organized and Constrained Media, Chapter 13, VCH Publ., New York (1991).Google Scholar
  28. 17.
    A. K. Livesey and J. C. Brochon, Biophys. J. 52, 693 (1987).CrossRefGoogle Scholar
  29. 18.
    J. Vaitkus, J. Phys. Stat. Sol. 34, 769 (1976).ADSCrossRefGoogle Scholar
  30. 19. (a)
    Y. Rosenwaks, L. Bumstein, Y. Shapira, and D. Huppert, J. Phys. Chem. 94, 6842 (1990);Google Scholar
  31. (b).
    D. Benjamin, and D. Huppert, J. Phys. Chem. 92, 4678 (1988).CrossRefGoogle Scholar
  32. 20.
    Y. Rosenwaks, B. R. Thacker, R. K. Ahrenkiel, and A. J. Nozik, J. Phys. Chem. 96, 1096 (1992).CrossRefGoogle Scholar
  33. 21. (a)
    A. Henglein, Topics in Current Chemistry 143, 115 (1988);Google Scholar
  34. (b).
    D. W. Bahnermann, Israel J. Chem. 33, 115 (1993);Google Scholar
  35. (c).
    Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).CrossRefGoogle Scholar
  36. 22.
    G. Mie, Ann. Phys. 3, 377 (1908).CrossRefGoogle Scholar
  37. 23.
    H. Frolich, Physica 6, 406 (1937).ADSCrossRefGoogle Scholar
  38. 24.
    L. E. Brus, J Chem. Phys. 80, 4403 (1984).ADSCrossRefGoogle Scholar
  39. 25. (a)
    M. Haase, H. Weller, and A. Henglein, J. Phys. Chem. 92, 482 (1988);Google Scholar
  40. (b).
    Y. Nosaka, J Phys. Chem. 95, 5054 (1991).CrossRefGoogle Scholar
  41. 26.
    N. Chestnoy, T. D. Harris, H. R. Hull, and L. E. Brus, J. Phys. Chem. 90, 3393 (1986).CrossRefGoogle Scholar
  42. 27.
    N. J. Albery and P. N. Bartlett, J Electrochem. Soc. 131, 315 (1984).ADSCrossRefGoogle Scholar
  43. 28.
    E Cao, G. Oskam, P. C. Searson, J. M. Stipkala, T. A. Heimer, E Farzad, and G. J. Meyer, J. Phys. Chem. 99, 11974 (1995).CrossRefGoogle Scholar
  44. 29.
    A. Goosens, J. Electrochem. Soc. 143, L131 (1996).CrossRefGoogle Scholar
  45. 30.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Chapter 9, Plenum Press, New York (1983).Google Scholar
  46. 31.
    W H. Brattain and J. Bardeen, J. Bell Syst. Tech. J. 32, I (1953).Google Scholar
  47. 32.
    G. Oster and M. Yamamoto, J. Appl. Phys. 37, 823 (1966).ADSCrossRefGoogle Scholar
  48. 33.
    R. Z. Nink, Naturforsch 24a, 1329 (1969).Google Scholar
  49. 34.
    W. B. Pennebaker and J. E O’Hanlon, J. Appl. Phys. 45, 1315 (1974).CrossRefGoogle Scholar
  50. 35.
    M. Anpo and Y. Kubokawa, J Phys. Chem. 88, 5556 (1984).CrossRefGoogle Scholar
  51. 36.
    M. C. Ko and G. J. Meyer, in preparation.Google Scholar
  52. 37.
    M. Haase, H. Weller, and A. Henglein, J. Phys. Chem. 92, 482 (1988).CrossRefGoogle Scholar
  53. 38.
    J. Rabani and D. Behar, J. Phys. Chem. 93, 2559 (1989).CrossRefGoogle Scholar
  54. 39.
    U. Koch, A. Fojtik, H. Weller, and A. Henglein, Chem. Phys. Lett. 122, 507 (1985).ADSCrossRefGoogle Scholar
  55. 40.
    T. Wolkenstein, G. P. Peka, and V. V. Malakhov, J. Lumin. 5, 261 (1972).CrossRefGoogle Scholar
  56. 41.
    E N. Castellano, J. M. Stipkala, L. A. Friedman, and G. J. Meyer, Chem. Mat. 6 2123 (1994) and references cited therein.Google Scholar
  57. 42. (a)
    M. Anpo, T. Shima, and Y. Kubokawa, Chem. Lett 12, 1799 (1985);Google Scholar
  58. (b).
    M. Anpo, N. Aikawa, Y. Kubokawa, M. Che, C. Louis, and E. Giamello, J Phys. Chem. 89, 5017 (1985).CrossRefGoogle Scholar
  59. 43.
    T. Suzuki and M. Ogawa, Appl. Phys. Lett. 34, 447 (1979).ADSCrossRefGoogle Scholar
  60. 44.(a)
    H. Nagai and Y. Naguchi, Appl. Phys. Lett. 33, 312 (1978);Google Scholar
  61. (b).
    H. Nagai, S. Tohno, and Y. Mizushima, J. Appl. Phys. 50, 5546 (1979).Google Scholar
  62. 45. (a)
    S. D. Lester, T. S. Kim, and B. G. Streetman, J. Electrochem. Soc. 133, 2208 (1986);Google Scholar
  63. (b).
    S. D. Lester, T. S. Kim, and B. G. Streetman, J. Appl. Phys. 60, 4209 (1986).CrossRefGoogle Scholar
  64. 46.
    C. W. Wilmsen, P. D. Kirchner, and J. M. Woodall, J. Appl. Phys. 64, 3287 (1988).ADSCrossRefGoogle Scholar
  65. 47.
    G. J. Meyer, Doctoral Dissertation, University of Wisconsin, Madison (1989).Google Scholar
  66. 48.
    H. Hasegawa, T. Saitoh, S. Konishi, H. Ishii, and H. Ohno, Jpn. J. Appl. Phys. 27, L2177 (1988).ADSCrossRefGoogle Scholar
  67. 49. (a)
    C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, Appl. Phys. Lett. 51, 33 (1987);Google Scholar
  68. (b).
    B. J. Skromme, C. J. Sandroff, E. Yablonovitch, and T. Gmitter, Appl. Phys. Lett. 51, 2022 (1987);ADSCrossRefGoogle Scholar
  69. (c).
    L. A. Farrow, C. J. Sandroff, M. C. Tamargo, Appl. Phys. Lett. 51, 1931 (1987);ADSCrossRefGoogle Scholar
  70. (d).
    E. Yablonovitch, C. J. Sanddroff, R. Bhat, and T. Gmitter, Appl. Phys. Lett. 51, 439 (1987);ADSCrossRefGoogle Scholar
  71. (e).
    R. N. Nottenburg, C. J. Sandroff, D. A. Humphrey, T. H. Hollenbeck, R. Bhat, Appl. Phys. Lett. 52, 218 (1988);ADSCrossRefGoogle Scholar
  72. (f).
    C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison, Appl. Phys. Lett. 54, 362 (1989).ADSCrossRefGoogle Scholar
  73. 50. (a)
    S. R. Lunt, G. N. Ryba, P. G. Santangelo, and N. S. Lewis, J. Appl. Phys. 70, 7449 (1991);Google Scholar
  74. (b).
    G. N. Ryba, C. N. Kenyon, and N. S. Lewis, J. Phys. Chem. 97, 13814 (1993).CrossRefGoogle Scholar
  75. 51. (a)
    R. S. Besser and C. R. Helms, Appl. Phys. Lett. 52, 1707 (1988);Google Scholar
  76. (b).
    C. J. Spindt, R. S. Besser, R. Cao, K. Miyano, C. R. Helms, and W. E. Spicer, Appl. Phys. Lett. 54, 1148 (1989);ADSCrossRefGoogle Scholar
  77. (c).
    R. S. Besser and C. R. Helms, J. Appl. Phys. 65, 4306 (1989).ADSCrossRefGoogle Scholar
  78. 52.
    W. G. Becker and A. J. Bard, J Phys. Chem 87, 4888 (1983).CrossRefGoogle Scholar
  79. 53. (a)
    S. H. Liebson, J. Electrochem. Soc. 101, 359 (1954);Google Scholar
  80. b).
    (b) S. H. Liebson and E. J. West, J. Chem. Phys. 23, 977 (1955)Google Scholar
  81. c).
    S. H. Liebson, J. Chem. Phys. 23, 1732 (1955);ADSGoogle Scholar
  82. (d).
    S. H. Liebson, J. Electrochem. Soc. 102, 529 (1955).Google Scholar
  83. 54.
    D. W Nyberg and K. Colbow, Can. J. Phys. 45, 2833 (1967).ADSCrossRefGoogle Scholar
  84. 55.
    G. Heine and K. Wandel, Phys. Stat. Sol. 19, 415 (1973).ADSCrossRefGoogle Scholar
  85. 56.
    C. E. Bleil, W. A. Albers, Surf. Sci. 2, 307 (1964).ADSCrossRefGoogle Scholar
  86. 57. (a)
    B. V. Novikov and A. E. Cherednichenko, Phys. Lett 32A, 205 (1970);Google Scholar
  87. (b).
    A. E. Cherednichenko, B. V. Novikov, and G. V. Benemanskaya, J. Lumin. 6, 193 (1973).ADSCrossRefGoogle Scholar
  88. 58. (a)
    T. Wolkenstein, G. P. Peka, and V. V. Malakhov, J. Lumin 5, 252 (1972);Google Scholar
  89. (b).
    T. Wolkenstein, G. P. Peka, and V. V Malakhov, Kin. i Kat. 14, 1052 (1973).Google Scholar
  90. 59.
    M. Hiramoto, K. Hashimoto, and T. Sakata, Chem. Phys. Lett. 182, 139 (1991).ADSCrossRefGoogle Scholar
  91. 60. a)
    G. J. Meyer, G. C. Lisensky and A. B. Ellis, J Am. Chem. Soc. 110, 4914 (1988);Google Scholar
  92. (b).
    L. K. Leung, G. J. Meyer, G. C. Lisensky, and A. B. Ellis, J. Phys. Chem. 94, 1214 (1990).CrossRefGoogle Scholar
  93. 61. a)
    G. J. Meyer, L. K. Leung, J. Yu, G. C. Lisensky and A. B. Ellis, J. Am. Chem. Soc. 111, 5146 (1989);Google Scholar
  94. (b).
    E. J. Winder, D. E. Moore, D. R. Neu, A. B. Ellis, J. E Geisz, and T. F. Kuech, J. Cryst. Growth 148, 63 (1995).ADSCrossRefGoogle Scholar
  95. 62.
    D. R. Neu, J. A. Olson, and A. B. Ellis, J Phys. Chem. 97, 5713 (1993).CrossRefGoogle Scholar
  96. 63.
    G. C. Lisensky, G. J. Meyer, and A. B. Ellis, Anal. Chem. 60, 2531 (1988).CrossRefGoogle Scholar
  97. 64. (a)
    C. J. Murphy and A. B. Ellis, J Phys. Chem. 94, 3082 (1990);Google Scholar
  98. (b).
    J. Z. Zhang, M. J. Geselbracht, and A. B. Ellis, J. Am. Chem. Soc., 115, 7789 (1993);CrossRefGoogle Scholar
  99. (c).
    K. D. Kepler, G. C. Lisensky, M. Patel, L. A. Sigworth, and A. B. Ellis, J. Phys. Chem. 99, 16011 (1995);CrossRefGoogle Scholar
  100. (d).
    J. Z. Zhang and A. B. Ellis, J Phys. Chem. 96, 2700 (1992).CrossRefGoogle Scholar
  101. 65. (a)
    C. J. Murphy and A. B. Ellis, Polyhedron 9, 1913 (1900);Google Scholar
  102. (b).
    C. J. Murphy, G. C. Lisensky, L. K. Leung, G. R. Kowach, and A. B. Ellis, J. Am. Chem. Soc. 112, 8344 (1990);CrossRefGoogle Scholar
  103. G. C. Lisensky, R. L. Penn, C. J. Murphy, and A. B. Ellis, Science, 248, 840 (1990).ADSCrossRefGoogle Scholar
  104. 66.
    R. Rossetti and L. E. Brus, J. Phys. Chem. 86, 4470 (1982).CrossRefGoogle Scholar
  105. 67. (a)
    A. Henglein, J Phys. Chem. 86, 2291 (1982);Google Scholar
  106. b).
    R. Rossetti, S. M. Beck, and L. E. Brus, J. Am. Chem. Soc. 106, 980 (1984).Google Scholar
  107. 68. (a)
    T. Dannhauser, M. O’Neil, K. Johannson, D. Whitten, and G. J. McLendon, Phys. Chem. 90, 6074 (1986);Google Scholar
  108. (b).
    M. O’Neil, J. Marohn, and G. McLendon, J. Phys. Chem. 94, 4356 (1990).CrossRefGoogle Scholar
  109. 69.
    U. Resch, A. Eychmuller, M. Haase, and H. Weller, Langmuir 8, 2215 (1992).CrossRefGoogle Scholar
  110. 70.
    L. T. Canham, J Phys. Chem. Solids 47, 363 (1986).Google Scholar
  111. 71.
    L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
  112. 72.
    D. C. Benshalet et al. eds., Optical Properties of Low Dimensional Silicon Structures, Kluwer Academic, Dordrecht (1993); (b) L. J. Brus, J. Phys. Chem. 98, 3575 (1994).Google Scholar
  113. 73.
    J. Chun, A. B. Bocarsly, T. R. Cottrell, J. B. Benziger, and J. C. Lee, J. Am. Chem. Soc. 115, 3024 (1993).Google Scholar
  114. 74. (a)
    J. L. Coffer, S. C. Lilley, R. A. Martin, and L. A. Files-Sesler, J. Appl. Phys. 74, 2094 (1993);Google Scholar
  115. (b).
    J. L. Coffer, J. Luminescence 70, 343 (1996);Google Scholar
  116. (c).
    B. Sweryda-Krawiec and J. L. Coffer, J. Electrochem. Soc. 142, L93 (1995);CrossRefGoogle Scholar
  117. (d).
    R. Chandler-Henderson, B. Sweryda-Krawiec, and J. L. Coffer, J. Phys. Chem. 99, 8851 (1995).CrossRefGoogle Scholar
  118. 75. (a)
    J. M. Lauerhaas, G. M. Credo, J. L. Heinrich, and M. J. Sailor, J Am. Chem. Soc. 114, 1911 (1992);Google Scholar
  119. (b).
    J. M. Lauerhaaas and M. J. Sailor, Science, 261, 1567 (1993).ADSCrossRefGoogle Scholar
  120. 76.
    J. M. Rehm, G. L. McLendon, L. Tsybeskov, and P. M. Fauchet, Appl. Phys. Lett. 66, 3669 (1995).ADSCrossRefGoogle Scholar
  121. 77. (a)
    M. C. Ko and G. J. Meyer, Chem. Mat. 7, 12 (1995);Google Scholar
  122. (b).
    M. C. Ko and G. J. Meyer, Chem. Mat. 8, 2686 (1996).CrossRefGoogle Scholar
  123. 78.
    D. L. Fisher, J. Harper, and M. J. Sailor, J. Am. Chem. Soc. 117, 7846 (1995).CrossRefGoogle Scholar
  124. 79.
    J. Rehm, G. McLendon, and P. Fauchet, J. Am. Chem. Soc. 118, 4490 (1996).CrossRefGoogle Scholar
  125. 80. (a)
    D. Andsager, J. Hilliard, J. M. Hetrick, L. H. AbuHassan, M. Plisch, and M. H. Nayfeh, J. Appl. Phys. 74, 4783 (1993);Google Scholar
  126. (b).
    J. E. Hilliard, H. M. Nayfeh, and M. H. Nayfeh J Appl. Phys. 77, 4130 (1995).ADSCrossRefGoogle Scholar
  127. 81.
    M. K. Carpenter, H. V. Ryswyk and A. B. Ellis, Langmuir 1, 605 (1985).CrossRefGoogle Scholar
  128. 82.
    L. K. Leung, N. J. Komplin, A. B. Ellis, and N. Tabatabaie, J. Phys. Chem. 95, 5918 (1991).CrossRefGoogle Scholar
  129. 83.
    H. Van Ryswyk and A. B. Ellis, J Am. Chem. Soc. 108, 2454 (1986).CrossRefGoogle Scholar
  130. 84.
    D. Moore, G. Lisensky and A. B. Ellis, J. Am. Chem. Soc. 116, 9487 (1994).CrossRefGoogle Scholar
  131. 85.
    R. R. Chandler and J. L. Coffer, J Phys. Chem. 97, 8767 (1993).CrossRefGoogle Scholar
  132. 86.
    A. W. Adanson, Physical Chemistry of Surfaces, 5th edn„ Wiley, Chichester (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Minh C. Ko
    • 1
  • Gerald J. Meyer
    • 1
  1. 1.Department of ChemistryJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations