Pressure Effects on Emissive Materials

  • John W. KenneyIII
Part of the Modern Inorganic Chemistry book series (MICE)


The investigation of the properties of substances under high pressures has emerged as a major multidisciplinary research endeavor embracing a diverse arsenal of spectroscopic, physical, and chemical probes. High pressure NMR, ESR, IR, Raman, Brillouin, electronic absorption, electronic emission, X-ray, and Mössbauer spectroscopic experiments are now commonplace.1 The vigorous state of high pressure research is attested to by a number of excellent books2–5 and review articles,1,6–8 to which the reader is referred to gain insight into the historical origins and current breadth of high pressure studies. Holzapfel’s review provides a thorough, up-to-date compendium of high pressure references.8 The exhaustive compilation of earlier high pressure literature (1900–1968) by Merrill also should be noted.9 Many have contributed to the development of high pressure science. However, particular mention should be made of the pioneering high pressure work of Bridgman,10,11 rightly called the father of high pressure science, and the thorough and richly diverse high pressure spectroscopic studies of Drickamer.12–15


Excited State Pressure Effect Diamond Anvil Cell Emissive Material Mean Spherical Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    A. Jayaraman, Rev. Mod. Phys. 55, 65 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    R. S. Bradley, ed., High Pressure Physics and Chemistry, Vols. 1 and 2, Academic Press, New York (1963).Google Scholar
  3. 3.
    N. S. Isaacs and W. B. Holzapfel, eds. High Pressure Techniques in Chemistry and Physics: A Practical Approach, Oxford University Press, Oxford (1995)Google Scholar
  4. 4.
    R. Pucci and T. G. Piccitto, eds., Molecular Solids Under Pressure, North-Holland, Amsterdam (1991).Google Scholar
  5. 5.
    H. G. Drickamer and C. W. Frank, eds., Electronic Transitions and the High Pressure Chemistry and Physics of Solids, Chapman and Hall, London (1973).Google Scholar
  6. 6.
    S. Ramaseshan, G. Parthasarathy, and E. S. R. Gopal, Pramana 28, 435 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    R. J. Hemley, P. M. Bell, and H. K. Mao, Science 237, 605 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    W. B. Holzapfel, Rep. Prog. Phys. 59, 29 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    L. Merrill, High Pressure Bibliography 1900–1968, Vols. 1 and 2, High Pressure Data Center, BYU, Provo, UT (1970).Google Scholar
  10. 10.
    P. W. Bridgman, Physics of High Pressure, Dover, New York (1970)Google Scholar
  11. 11.
    E W. Bridgman, Collected Experimental Papers, Harvard University, Cambridge, MA (1964).Google Scholar
  12. 12.
    H. G. Drickamer, Acc. Chem. Res. 19, 329 (1986).CrossRefGoogle Scholar
  13. 13.
    H. G. Drickamer, Physica A 156, 179 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    H. G. Drickamer, in High Pressure Science and Technology, B. Voder and P. Marteau, eds., pp. 814, Pergamon Press, New York (1980).Google Scholar
  15. 15.
    H. G. Drickamer, Ann. Rev. Phys. Chem. 33, 35 (1982).Google Scholar
  16. 16.
    Confusion and inconsistency abound in the chemical and spectroscopic literature concering the use of the words luminescence, emission, fluorescence and phosphorescence. In this article, the words luminescence and emission are taken to be synonyms. Each of these two terms will be used interchangeably to describe the general process wherein a system undergoes a transition from a higher energy excited state to a lower energy state with the emission of one or more photons. The words fluorescence and phosphorescence are more specific terms used in this article to denote luminescence or emission of a particular type. A fluorescence emission is defined to be a luminescence in which the upper and lower states both exhibit the same electronic spin multiplicity (e.g. afluorescence in a d3 transition metal complex). Similarly, a phosphorescence emission is defined to be a luminescence in which there is a change of electronic spin multiplicity in going from the upper state to the lower state (e.g., a E- 2E5 phosphorescence in a d3 transition metal complex). When electronic spin multiplicities are unknown, not a point of interest for the problem at hand, or difficult or impossible to specify (e.g., as a consequence of a strong-spin orbit coupling perturbation), the generic terms emission or luminescence will be used.Google Scholar
  17. 17.
    R. D. Ballard, The Discovery of the Titanic, Warner, New York (1987).Google Scholar
  18. 18.
    R. D. Ballard, Exploring the Titanic, Scholastic, New York (1988).Google Scholar
  19. 19.
    L. W. Finger, Nucl. Instr. Meth. Phys. Res. B 97, 55 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    R. Jeanloz, Ann. Rev. Phys. Chem. 40, 237 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    R. Jeanloz, Ann. Rev. Earth Planet. Sci. 18, 357 (1990).ADSCrossRefGoogle Scholar
  22. 22.
    D. Morrison and S. C. Wolff, Frontiers of Astronomy, 2nd ed., p. 132, Saunders, New York (1994).Google Scholar
  23. 23.
    Ref. 22, pp 332–336.Google Scholar
  24. 24.
    R. Rhodes, The Making of the Atomic Bomb, Simon and Schuster, New York (1986).Google Scholar
  25. 25.
    Physics Today 49 26 (1996).Google Scholar
  26. 26.
    A. L. Ruoff, in High Pressure Research Applications in Geophysics, M. H. Manghhani and S. Akimoto, eds., pp. 13–33, Academic Press, New York (1997).Google Scholar
  27. 27.
    Shock Compression of Condensed Matter-1989,“ S. C. Schmidt, J. N. Jonson, and L. W. Davidson, eds., North-Holland, Amsterdam (1990).Google Scholar
  28. 28.
    S. Weir, A. Mitchell, and B. Nellis, Phys. Rev. Lett. 76 (11), 1996.Google Scholar
  29. 29.
    R. M. Hazen, The New Alchemists, Times Books, New York (1993).Google Scholar
  30. 30.
    A. Jayaraman, Scientific American 250, 54 (1984).ADSCrossRefGoogle Scholar
  31. 31.
    M. Seal, High Temp. High Press 16, 573 (1984).Google Scholar
  32. 32.
    L. Merrill and W. A. Bassett, Rev. Sci. Instrum. 45, 290 (1974).ADSCrossRefGoogle Scholar
  33. 33.
    G. J. Piermarini, S. Block, J. D. Barnett, and R. A. Forman, J. Appl. Phys. 46, 2774 (1975).Google Scholar
  34. 34.
    W. E. Sherman and A. A. Stadtmuller, Experimental Techniques in High Pressure Research, pp. 319–320, Wiley, New York (1987).Google Scholar
  35. 35.
    A. L. Schawlow, A. H. Piksis, and S. Sugano, Phys. Rev. 122, 1469 (1961).ADSCrossRefGoogle Scholar
  36. 36.
    G. Jones and D. Dunstan, J. Rev. Sci. Instrum. 67, 489 (1996).ADSCrossRefGoogle Scholar
  37. 37.
    S. M. Sharma and Y. M. Gupta, Phys. Rev. B. 43, 879 (1991).ADSCrossRefGoogle Scholar
  38. 38.
    H. Hough, J. Demas, T. O. Williams, and H. N. G. Wadley, Acta Metall. Mater. 43, 821 (1995).CrossRefGoogle Scholar
  39. 39.
    W. Y. Jia, H. M. Liu, Y. Y. Wang, U. Hommerich, H. Eilers, K. Hof man, and W. M. Yen, J. Luminescence 59, 279 (1994).ADSCrossRefGoogle Scholar
  40. 40.
    W. Y. Jia, H. M., Liu, Y. Y. Wang, U. Hommerich, H. Eilers, K. R. Hoffman, and W. M. Yen, J. Luminescence 60, 158 (1994).ADSCrossRefGoogle Scholar
  41. 41.
    M. Holtz, T. R. Park, J. Amarasekera, S. A. Solin, and T. J. Pinnavaia, J. Chem. Phys. 100, 3346 (1994).ADSCrossRefGoogle Scholar
  42. 42.
    U. Hommerich, H. Eilers, W. M. Yen, W. Jia, and Y. Wang, Optics Commun. 106, 218 (1994).ADSCrossRefGoogle Scholar
  43. 43.
    H. G. Drickamer and K. L. Bray, Acc. Chem. Res. 23, 55 (1990).CrossRefGoogle Scholar
  44. 44.
    H. G. Drickamer, Solid State Phys. 17, 1 (1965).CrossRefGoogle Scholar
  45. 45.
    The volume change is expressed as a positive absolute value in this expression for the pressure-volume work term. This differs from the pressure-volume work expression w = -pA V where AV is negative for compressions and positive for expansions.Google Scholar
  46. 46.
    P. D. Johnson and E E. Williams, Phys. Rev. 95, 69 (1954).ADSCrossRefGoogle Scholar
  47. 47.
    S. H. Lin, J. Chem. Phys. 59, 3358 (1973).ADSGoogle Scholar
  48. 48.
    S. E. Agnew and B. I. Swanson, J Phys. Chem. 94, 995 (1990).CrossRefGoogle Scholar
  49. 49.
    D. Curie, D. E. Berry, and E Williams, Phys. Rev. B. 20, 2323 (1979).ADSCrossRefGoogle Scholar
  50. 50.
    J. S. Olsen, C. S. G. Cousins, L. Gerward, H. Jhans, and B. J. Sheldon, Phys. Scr. 43, 327 (1991).ADSCrossRefGoogle Scholar
  51. 51.
    F. Ogata, T. Kambara, N. Sasaki, and K. I. Gondaira, J. Phys. C., Solid State Phys. 16, 1391 (1983).ADSCrossRefGoogle Scholar
  52. 52.
    C. P. Slichter and H. G. Drickamer, J. Chem. Phys. 56, 2142 (1972).ADSCrossRefGoogle Scholar
  53. 53.
    J. K. Burdett, Adv. Inorg. Chem. Radiochem. 21, 113 (1978).CrossRefGoogle Scholar
  54. 54.
    J. W. Kenney, III, J. W. Clymire, and S. F. Agnew, J. Am. Chem. Soc. 117, 1645 (1995).CrossRefGoogle Scholar
  55. 55.
    A. G. Rinzler, J. E Dolan, L. A. Kappers, D. S. Hamilton, and R. H. Bartram, J. Chem. Phys. Solids 54, 89 (1993).ADSCrossRefGoogle Scholar
  56. 56.
    R. H. Bartram, J. E Dolan, J. C. Charpire, A. G. Rinzler, and L. A. Kappers, Cryst. Latt. Def. Amorph. Mat. 15, 165 (1987).Google Scholar
  57. 57.
    J. E Dolan, L. A. Kappers, and R. H. Bartram, Phys. Rev. B 33, 7339 (1986).ADSCrossRefGoogle Scholar
  58. 58.
    J. N. Demas and G. A. Crosby, J. Am. Chem. Soc. 92, 7262 (1970).CrossRefGoogle Scholar
  59. 59.
    S. Ohnishi, and S. Sugano, Jap. J Appl. Phys. 21, L309 (1982).ADSCrossRefGoogle Scholar
  60. 60.
    J. H. Eggert, K. A. Goettel, and I. F. Silvera, Phys. Rev. B. 40, 5724 (1989).ADSCrossRefGoogle Scholar
  61. 61.
    J. H. Eggert, K. A. Goettel, and I. E Silvers, Phys. Rev. B. 40, 5733 (1989).ADSCrossRefGoogle Scholar
  62. 62.
    J. H. Eggert, E Moshary, W. J. Evans, K. A. Goettel, and 1. E Silvers, Phys. Rev. B. 44, 7202 (1991).ADSCrossRefGoogle Scholar
  63. 63.
    M. Du, Phys. Lett. A 163, 326 (1992).ADSCrossRefGoogle Scholar
  64. 64.
    M. Grinberg and T. Orlinkowski, J. Luminescence 53, 447 (1992).ADSCrossRefGoogle Scholar
  65. 65.
    W. L. Vos and J. A. Schouten, J. Appl. Phys. 69, 6744 (1991).Google Scholar
  66. 66.
    S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B. 41, 5372 (1990).ADSCrossRefGoogle Scholar
  67. 67.
    Y. Sato-Sorensen, J. Appl. Phys. 60, 2985 (1986).ADSCrossRefGoogle Scholar
  68. 68.
    S. Decurtins and H. Gödel, Inorg. Chem. 21, 3598 (1982).CrossRefGoogle Scholar
  69. 69.
    S. Decurtins, H. U. Gödel, and A. Pfeuti, Inorg. Chem. 21, 1101 (1982).CrossRefGoogle Scholar
  70. 70.
    K. J. Schenk and H. U. Gödel, Inorg. Chem. 21, 2253 (1982).CrossRefGoogle Scholar
  71. 71.
    R. P. Scaringe, P. Singh, R. P. Eckberg, W. E. Hatfield, and D. J. Hodgson, Inorg. Chem. 14, 1127 (1975).CrossRefGoogle Scholar
  72. 72.
    H. R. Fischer, J. Glerup, D. J. Hodgson, and E. Pedersen, Inorg. Chem. 21, 3063 (1982).CrossRefGoogle Scholar
  73. 73.
    H. R. Fisher and D. J. Hodgson, Inorg. Chem. 23, 4755 (1984).CrossRefGoogle Scholar
  74. 74.
    J. W. Kenney, III in preparation.Google Scholar
  75. 75.
    D. M. Roundhill, H. B. Gray, and C. Che, Acc. Chem. Res. 22, 55 (1989).CrossRefGoogle Scholar
  76. 76.
    W. A. Fordyce, J. G. Brummer, and G. A. Crosby, J. Am. Chem. Soc. 103, 7061 (1981).CrossRefGoogle Scholar
  77. 77.
    S. E Rice and H. B. Gray, J. Am. Chem. Soc. 105, 4571 (1983).CrossRefGoogle Scholar
  78. 78.
    J. G. Brummer and G. A. Crosby, Chem. Phys. Lett. 112, 15 (1984).ADSCrossRefGoogle Scholar
  79. 79.
    W. L. Parker and G. A. Crosby, Chem. Phys. Lett. 105, 544 (1984).ADSCrossRefGoogle Scholar
  80. 80.
    C. Che, L. G. Butler, H. B. Gray, R. M. Crooks, and W. H. Woodruff, J. Am. Chem. Soc. 105, 5492 (1993).CrossRefGoogle Scholar
  81. 81.
    D. J. Theil, P. Livins, E. A. Stern, and A. Lewis, Nature 362, 40 (1993).ADSCrossRefGoogle Scholar
  82. 82.
    H. B. Kim, T. Hiraga, T. Uchida, N. Kitamura, and S. Tazuke, Coord. Chem. Rev. 97, 81 (1990).CrossRefGoogle Scholar
  83. 83.
    L. Bär, H. Englmeier, G. Gliemann, U. Klement, and K.-J. Range, Inorg. Chem. 29, 1162 (1990).CrossRefGoogle Scholar
  84. 84.
    M. Fetterholf, A. E. Friedman, Y. Y. Yang, H. Offen, and P. C. Ford, J. Phys. Chem. 92, 3670 (1988).Google Scholar
  85. 85.
    R. Akimoto, M. Kobayashi, and T. Suzuki, J. Phys. Soc. Jpn. 62, 1490 (1993).ADSCrossRefGoogle Scholar
  86. 86.
    G. Chen, N. A. Stump, R. G. Haire, J. B. Bums, and J. R. Peterson, High Press. Res. 12, 83 (1994).ADSCrossRefGoogle Scholar
  87. 87.
    G. Chen, N. A. Stump, R. G. Haire, J. R. Peterson, and M. M. Abraham, J. Phys. Chem. Solids 53, 1253 (1992).ADSCrossRefGoogle Scholar
  88. 88.
    C. X. Guo, B. Li, Y. E He, and H. B. Cui, J. Luminescence 48, 489 (1991).CrossRefGoogle Scholar
  89. 89.
    G. M. Murray, G. D. Delcul, G. M. Begun, R. G. Haire, J. P. Young, and J. R. Peterson, Chem. Phys. Lett. 168, 473 (1990).ADSCrossRefGoogle Scholar
  90. 90.
    G. M. Murray, G. D. Delcul, S. E. Nave, C. T. P. Chang, R. G. Haire, and J. R. Peterson, Eur. J. Sol. State Inorg. Chem. 28, 105 (1991).Google Scholar
  91. 91.
    G. D. Delcul, G. R. Haire, and J. R. Peterson, J. Alloys Comp 181, 63 (1992).CrossRefGoogle Scholar
  92. 92.
    G. D. Hager and G. A. Crosby, J. Am. Chem. Soc. 97, 7042 (1975).CrossRefGoogle Scholar
  93. 93.
    G. D. Hager, R. J. Watts, and G. A. Crosby, J. Am. Chem. Soc. 97, 1037 (1975).Google Scholar
  94. 94.
    K. W. Hipps and G. A. Crosby, J. Am. Chem. Soc. 97, 7042 (1975).CrossRefGoogle Scholar
  95. 95.
    J. van Houten and R. J. Watts, J. Am. Chem. Soc. 98, 4853 (1976).CrossRefGoogle Scholar
  96. 96.
    M. L. Fetterolf and H. W. Offen, J. Phys. Chem. 89, 3320 (1985).CrossRefGoogle Scholar
  97. 97.
    M. L. Fetterolf and H. W. Offen, J. Phys. Chem. 90, 1828 (1986).CrossRefGoogle Scholar
  98. 98.
    T. Hiraga, N. Kitamura, H. Kim, S. Tazuke, and N. Mori, J. Phys. Chem. 93, 2940 (1989).CrossRefGoogle Scholar
  99. 99.
    H. Yersin and E. Gallhuber, Inorg. Chem. 23, 3745 (1994).CrossRefGoogle Scholar
  100. 100.
    J. W. Kenney, III, D. R. Boone, D. R. Striplin, Y. H. Chen, and K. B. Hamar, Organometallics 12, 3671 (1993).CrossRefGoogle Scholar
  101. 101.
    T. L. Constantopoulos, Master’s Thesis, Eastern New Mexico University (1994).Google Scholar
  102. 102.
    D. A. Palmer and H. Kelm, Coord. Chem. Rev. 36, 89 (1981).CrossRefGoogle Scholar
  103. 103.
    W. Weber, R. van Eldik, H. Kelm, J. Dibenedetto, Y. Ducommun, H. Offen, and P. C. Ford, Inorg. Chem. 22, 623 (1983).CrossRefGoogle Scholar
  104. 104.
    W. Weber, J. DiBenedetto, H. Offen, R. van Eldik, and P. C. Ford, Inorg. Chem. 23, 2033 (1984).CrossRefGoogle Scholar
  105. 105.
    P. C. Ford, in Inorganic High Pressure Chemistry: Kinetics and Mechanisms, R. van Eldik, ed., pp. 313–330, Elsevier, New York (1986).Google Scholar
  106. 106.
    E C. Ford and D. R. Crane, Coord. Chem. Rev. 111, 153 (1991).CrossRefGoogle Scholar
  107. 107.
    M. L. Fetterolf and H. W. Offen, Inorg. Chem. 26, 1070 (1987).CrossRefGoogle Scholar
  108. 108.
    M. M. Li, D. J. Strachan, T. M. Ritter, M. Tamargo, and B. A. Weinstein, Phys. Rev. B. 50, 4385 (1994).ADSCrossRefGoogle Scholar
  109. 109.
    S. W. Kirchoefer, N. Holonyak, Jr., K. Hess, K. Meehan, D. A. Gulino, H. G. Drickamer, J. J. Coleman, and P. D. Dapkus, I Appt Phys. 21, 6037 (1982).ADSCrossRefGoogle Scholar
  110. 110.
    R. J. Warburton, T. P. Beales, N. J. Mason, R. J. Nicholas, and R. J. Walker, Semicon. Sci. Tech. 6, 527 (1991).ADSCrossRefGoogle Scholar
  111. 111.
    P Perlin, T. P. Sosin, W. Trzeciakowski and E. Litwin-Staszewska, Phys. Chem. Solids 56, 411 (1995).ADSCrossRefGoogle Scholar
  112. 112.
    M. S. Boley, R. J. Thomas, M. Chandrasekhar, H. R. Chandrasekhar, A. K. Ramdas, M. Kobayashi, and R. L. Gunshor, I Appl. Phys. 74, 4136 (1993).ADSCrossRefGoogle Scholar
  113. 113.
    L. S. Whatley and A. van Valkenburg, in Advances in High Pressure Research, R. S. Bradley, ed., Vol. 1, p. 334, Academic Press, New York (1966).Google Scholar
  114. 114.
    S. E. Babb and W. Robertson, in High Pressure Physics and Chemistry, R. S. Bradley, ed., p. 375, Academic Press, New York (1963).Google Scholar
  115. 115.
    Y. Ishida, N. Iwasaki, K. Asaunmi, T. Yajima, and Y. Maruyama, Appl. Phys. B 38, 159 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • John W. KenneyIII
    • 1
  1. 1.Chemical Physics Laboratory and Department of Physical SciencesEastern New Mexico UniversityPortalesUSA

Personalised recommendations