Skip to main content

Photophysical and Photochemical Properties of Gold(l) Complexes

  • Chapter
Book cover Optoelectronic Properties of Inorganic Compounds

Part of the book series: Modern Inorganic Chemistry ((MICE))

Abstract

Transition metal complexes with an open-shell configuration (dn, n < 10) have received considerable attention for their interesting photophysical properties. The binuclear metal-metal bonded complexes of RhI, IrI, and PtII display rich photochemistry.1 One example of particular interest is the PtII complex, [Pt2(H2P2O5)4]4−, which has an excited state that is better oxidant and reductant than its ground state,2 and undergoes facile atom-transfer reactions with a variety of organic substrates.3 However, perhaps the most extensively studied transition metal complexes in this area are based on [Ru(bpy)3]2+, bpy = bipyridine. The complexes have been used in the study of both electron and energy transfer reactions and contributed a great deal to the understanding of photochemistry in inorganic systems.4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. a) D. M. Roundhill, Photochemistry and Photophysics of Metal Complexes, Plenum Press, New York (1994);

    Google Scholar 

  2. S. E Rice, S. J. Midler, H. B. Gray, R. A. Goldbeck and D. S. Klieger Coord. Chem. Rev 43, 349 (1982);

    Article  Google Scholar 

  3. D. C. Smith and H. B. Gray, Coord. Chem. Rev. 100, 169 (1990).

    Article  Google Scholar 

  4. J. K. Nagle and D. M. Roundhill, Chemtract, Inorganic Chemistry 4, 141 (1992);

    Google Scholar 

  5. D. M. Roundhill, H. B. Gray, and C. M. Che, Acc. Chem. Res. 22, 55 (1989).

    Article  Google Scholar 

  6. R. J. Sweeney, E. L. Harvey, and H. B. Gray, Coord. Chem. Rev. 105, 23 (1990);

    Article  Google Scholar 

  7. A. P. Zipp, Coord. Chem. Rev. 84, 47 (1988).

    Article  Google Scholar 

  8. E. Krausz and J. Ferguson, Prog. Inorg. Chem. 37, 293 (1989);

    Article  Google Scholar 

  9. A. Juris, V. Balzani, E. Barigelletti, S. Campagna, P. Belser, and A. Von Zelewsky, A. Coord. Chem. Rev. 84, 85 (1988);

    Article  Google Scholar 

  10. V. Balzani, F. Bolletta, M. T. Gandolfi, and M. Maestri, Top. Curr. Chem. 75, 1 (1978).

    Article  Google Scholar 

  11. R. E. Ziolo, S. Lipton and Z. Dori, J. Chem. Soc., Chem. Commun. 1124 (1970).

    Google Scholar 

  12. a) D. T. Walz, in Advances in Inflammation Research, I. Ottemess, R. Capetola, and S. Wond, eds., Vol. 7, p 239, Raven Press, New York (1984);

    Google Scholar 

  13. B. M. Sutton, E. McCusty, D. T. Walz, M. J. DiMartino, J. Med. Chem. 15, 1095 (1972);

    Article  Google Scholar 

  14. D. T. Hill and B. M. Sutton, Cryst. Struct. Commun. 9, 679 (1980);

    Google Scholar 

  15. P. W. Roy, R. C. Elder, and K. Tepperman, Metal Based Drugs 1 521 (1994). Other articles in this issue of Metal Based Drugs also relate to this topic.

    Google Scholar 

  16. E. J. Corey, M. M. Mehrotra, and A. U. Khan, Science 236, 68 (1987).

    Article  ADS  Google Scholar 

  17. C. E. Briant, K. P. Hall, and D. M. P. Mingos, J Organomet. Chem. 229 C5 (1992);

    Google Scholar 

  18. H. Schmidbaur, J. R. Mandl, J. M. Bassett, G. Blaschke, and B. Zimmer-Gasser, Chem. Ber. 114, 433 (1981).

    Article  Google Scholar 

  19. H. Schmidbaur, U. S. Wohlleben, A. Frank, and G. Huttner, Chem. Ber. 110, 2751 (1997).

    Article  Google Scholar 

  20. R. Uson, A. Laguna, M. Laguna, M. N. Fraile, P. G. Jones, and G. M. Sheldrick, J Chem. Soc., Dalton Trans. 291 (1986).

    Google Scholar 

  21. J. Kozelka, H. R. Oswald and E. Dubler, Acta. Crystallogr. C42, 1007 (1986).

    Google Scholar 

  22. W. Ludwig and W. Meyer, Helv. Chim. Acta 65, 934 (1982).

    Article  Google Scholar 

  23. a) E J. Farrell and T. G. Spiro, Inorg. Chem. 10, 1606 (1971).

    Google Scholar 

  24. J. B. Miller and J. L. Burmeister, Synth, React. Inorg. Met.-Org. Chem. 15, 223 (1985).

    Article  Google Scholar 

  25. S. L. Lawton, W. J. Rohrbaugh, and G. T. Kokotailo, Inorg. Chem. 11, 2227 (1972).

    Article  Google Scholar 

  26. J. Weinstock, B. M. Sutton, G. Y. Kuo, D. T. Walz, and M. J. DiMartino, J. Med. Chem. 17, 139 (1974).

    Article  Google Scholar 

  27. H. Schmidbaur, J. R. Mandl, W. Richter, V. Bejenke, A. Frank, and G. Huttner, Chem. Ber. 110, 2236 (1977).

    Article  Google Scholar 

  28. J. Vicente, M. T. Chicote, I. Sauva-Llamas, P. G. Jones, K. Meyer-Base, and C. E. Erdbrüger, Organometallics 7, 997 (1988).

    Article  Google Scholar 

  29. H. Schmidbaur, W. Grag, and G. Müller, Angew. Chem., Int. Ed. Engl. 27, 417 (1988).

    Article  Google Scholar 

  30. C. M. Che, W. T. Wong, T. E Lai, and H. L. Kwong, J. Chem. Soc., Chem. Commun. 243 (1989).

    Google Scholar 

  31. C. King, J. C. Wang, M. N. I. Khan, and J. P. Fackler Jr., Inorg. Chem. 28, 2145 (1989).

    Article  Google Scholar 

  32. W. P. Schaefer, R. E. Marsch, T. M. McCleskey, and H. B. Gray, Acta. Crystallogr. C47, 2553 (1991).

    Google Scholar 

  33. C. M. Che, H. L. Kwong, V. W. W. Yam, and K. C. Cho, J. Chem. Soc., Chem. Commun. 885 (1989).

    Google Scholar 

  34. C. M. Che, H. L. Kwong, C. K. Poon, and V. W. W. Yam, J. Chem. Soc., Dalton Trans. 3215 (1990).

    Google Scholar 

  35. D. Li, C. M. Che, H. L. Kwong, and V. W. W. Yam, J. Chem. Soc., Dalton Trans. 3325 (1992).

    Google Scholar 

  36. H. R. C. Jaw, M. M. Savas, R. D. Rodgers, and W. R. Mason, Inorg. Chem. 28, 1028 (1989).

    Article  Google Scholar 

  37. H. Schmidbaur, A. Wohlleben, U. Schubert, A. Frank, and G. Huttner, Chem. Ber. 110, 2751 (1977).

    Article  Google Scholar 

  38. D. Li, X. Hong, C. M. Chem, W. C. Lo, and S. M. Peng, J. Chem. Soc., Dalton Trans. 2929 (1993).

    Google Scholar 

  39. C. M. Che, H. K. Yip, W. C. Lo, and S. M. Peng, Polyhedron 13, 887 (1994).

    Article  Google Scholar 

  40. W. B. Jones, J. Yuan, R. Naraanaswamy, M. A. Young, R. C. Elder, A. E. Bruce, and M. R. M. Bruce, Inorg. Chem. 34, 1996 (1995).

    Article  Google Scholar 

  41. R. Narayanaswamy, M. A. Young, E. Parkhurst, M. Ouellette, M. E. Kern, D. M. Ho, R. C. Elder, A. E. Bruce, and M. R. M. Bruce, Inorg. Chem. 32, 2506 (1993).

    Article  Google Scholar 

  42. Z. Assefa, B. G. McBurnett, R. J. Staples, and J. P. Fackler, Jr., Inorg. Chem. 34, 4965 (1995).

    Article  Google Scholar 

  43. X. Hong, K. K. Cheung, C. X. Guo, and C. M. Che, J. Chem. Soc., Dalton Trans. 186 (1994).

    Google Scholar 

  44. V. W. W. Yam and S. W. K. Choi, J. Chem. Soc., Dalton Trans. 2057 (1994).

    Google Scholar 

  45. C. M. Che, H. K. Yip, V. W. W. Yam, P. Y. Cheung, T. F. Lai, S. J. Shieh, and S. M. Peng, J. Chem. Soc., Dalton Trans. 427 (1992).

    Google Scholar 

  46. V. W. W. Yam, T. E Lai, and C. M. Che, J. Chem. Soc., Dalton Trans. 3747 (1990).

    Google Scholar 

  47. D. H. Brown, G. McKinlay, and W. E. Smith, J. Chem. Soc., Dalton Trans. 1874 (1977).

    Google Scholar 

  48. A. L. Balch, L. A. Fossett, J. K. Nagle, and M. M. Olmstead, J. Am. Chem. Soc. 110, 6732 (1988).

    Article  Google Scholar 

  49. J. P. Fackler, Jr, R. J. Staples, and Z. Assefa, J. Chem. Soc., Chem. Commun. 431 (1994).

    Google Scholar 

  50. B.-C. Tzeng, C.-M. Che, and S.-M. Peng, J. Chem. Soc., Dalton Trans. 1769 (1996).

    Google Scholar 

  51. A. L. Balch, V. J. Catalano, and M. M. Olmstead, Inorg. Chem. 29, 585 (1990).

    Article  Google Scholar 

  52. M. Inga, S. Kenney, J. W. Kenney, III, and G. A. Crosby, Organometallics 5, 230 (1986);

    Google Scholar 

  53. D. R. Striplin and G. A. Crosby, J. Phys. Chem. 99, 7977 (1995);

    Article  Google Scholar 

  54. D. R. Striplin, J. A. Brozik, and G. A. Crosby, Chem. Phys. Lett. 231, 159 (1994);

    Article  ADS  Google Scholar 

  55. D. R. Striplin and G. A. Crosby, J. Phys. Chem. 99, 11041 (1995).

    Article  Google Scholar 

  56. A. L. Balch and V. J. Catalano, Inorg. Chem. 30, 1302 (1991).

    Article  Google Scholar 

  57. H. K. Yip and C. M. Che, J. Chem. Soc., Chem. Commun. 885 (1989).

    Google Scholar 

  58. H. K. Yip, H. M. Lin, K. K. Cheung, C. M. Che, and Y. Wang, Inorg. Chem. 33, 1644 (1994).

    Article  Google Scholar 

  59. H. K. Yip, H. M. Li, Y. Wang, and C. M. Che, Inorg. Chem. 32, 3402 (1993).

    Article  Google Scholar 

  60. C. K. Chan, C. X. Guo, K. K. Cheung, D. Li, and C. M. Che, J. Chem. Soc. Dalton Trans. 2097 (1993).

    Google Scholar 

  61. A. J. Lees, Chem. Rev. 87, 71 (1987);

    Google Scholar 

  62. G. J. Ferraudi, Elements of Inorganic Photochemistry, Wiley, New York (1988).

    Google Scholar 

  63. A. L. Balch, D. E. Oram, J. K. Nagle, and P. E. Reedy, J. Am. Chem. Soc. 110, 454 (1988).

    Article  Google Scholar 

  64. A. L. Balch, V. J. Catalano, and M. M. Olmstead, J. Am. Chem. Soc. 112, 2010 (1990).

    Article  Google Scholar 

  65. A. L. Balch, V. J. Catalano, B. C. Noll, and M. M. Olmstead, J. Am. Chem. Soc. 112, 7558 (1990).

    Article  Google Scholar 

  66. a) V. W. W. Yam, S. W. K, Choi, K. K. W. Lo, W. F. Dung, and R. Y. C. Kong, J. Chem. Soc., Chem. Commun. 2379 (1994);

    Google Scholar 

  67. H. K. Yip, C. M. Che, S. M. Peng, J. Chem. Soc., Chem. Commun., 1626 (1991).

    Google Scholar 

  68. S. Wang, G. Garzön, C. King, J. C. Wang and J. P. Fackler, Jr., Inorg. Chem. 28, 4623 (1989).

    Article  Google Scholar 

  69. a) V. W. W. Yam, S. W. K, Choi, K. K. W. Lo, W. F. Dung, and R. Y. C. Kong, J. Chem. Soc., Chem. Commun. 2379 (1994);

    Google Scholar 

  70. H. K. Yip, C. M. Che, S. M. Peng, J. Chem. Soc., Chem. Commun., 1626 (1991).

    Google Scholar 

  71. Z. Assefa, G. Shankle, H. H. Patterson and R. Reynolds, Inorg. Chem. 33, 2187 (1994);

    Google Scholar 

  72. Z. Assefa, R. J. Staples, J. P. Fackler, Jr., H. H. Patterson and G. Shankle, Acta. Crystallogr. C51, 2527 (1995).

    Google Scholar 

  73. Z. Assefa, H. H. Patterson, Inorg. Chem. 33, 6194 (1994).

    Article  Google Scholar 

  74. G. Glieman, Struct. and Bonding 62 87 (1985) and references cited therein.

    Google Scholar 

  75. A. Rosenzweig and D. T. Cromer, Acta Crystallogr. 12, 709 (1959).

    Article  Google Scholar 

  76. H. Prosser, G. Wortmann, K. Syassen, and W. B. Holzapfel, Z. Physik. B24, 7 (1976);

    Google Scholar 

  77. D. Guenzburger and D. E. Ellis, Phys. Rev. B22, 4203 (1980).

    ADS  Google Scholar 

  78. H. H. Patterson, G. Roper, J. Biscoe A. Ludi, and N. Blom, J. Luminescence 555 (1984).

    Google Scholar 

  79. N. Blom, A. Ludi, H. B. Bürgi, and K. Tichÿ, Acta Crystallogr. C40, 1767 (1984).

    Google Scholar 

  80. J. T. Marken, N. Blom, G. Roper, A. D. Perregaux, N. Nagasundaram, M. R. Corson, A. Ludi, J. K. Nagle, and H. H. Patterson, Chem. Phys. Lett. 258, (1985).

    Google Scholar 

  81. J. H. Lacasce, Jr., W. A. Turner, M. R. Corson, P. J. Dolan, Jr., and J. K. Nagle, Chem. Phys. Lett. 289 (1987).

    Google Scholar 

  82. N. Nagasundaram, G. Roper, J. Biscoe, J. W. Chai, H. H. Patterson, N. Blom, and A. Ludi, Inorg. Chem. 25, 2947 (1986).

    Article  Google Scholar 

  83. L. H. Jones, J. Chem. Phys. 27, 468 (1957).

    Google Scholar 

  84. J. K. Nagle, J. H. Lacasce, Jr., P. J. Dolan, M. R. Corson, Z. Assefa, and H. H. Patterson, Mol. Cryst. Liq. Cryst. 181, 359 (1990).

    Google Scholar 

  85. H. Stammereich, B. M. Chadwick and S. G. Frankiss, J. Mol. Struct. 1, 196 (1967).

    Google Scholar 

  86. Z. Assefa, F. DeStafan, M. A. Garepapaghi, J. H. Lacasce, Jr., S. Ouellete, M. R. Corson, J. K. Nagle, and H. H. Patterson, Inorg. Chem. 30, 2868 (1991).

    Article  Google Scholar 

  87. P. Pyykkö, J. Li, and N. Runeberg, Chem. Phys. Lett. 218, 133 (1994).

    Article  ADS  Google Scholar 

  88. M. Nakamoto, W. Hiller, and H. Schmidbaur, Chem. Ber. 126, 605 (1993).

    Article  Google Scholar 

  89. H.-N. von Adams, J. Strähle, and W. Hiller, Z Anorg. Allg. Chem. 485, 81 (1982).

    Article  Google Scholar 

  90. E. Eitel, D. Oelknzg, W. Hiller, and J. Strähle, Z. Naturforsch B35, 1247 (1980).

    Google Scholar 

  91. Z. Assefa, B. G. McBurnett, R. J. Staples, J. P. Fackler, Jr., B. Assmann, K. Angermaier, and H. Schmibaur, Inorg. Chem. 34, 75 (1995).

    Article  Google Scholar 

  92. M. Y. Darensbourg and D. Daigle, Inorg. Chem. 14, 1217 (1975).

    Article  Google Scholar 

  93. D. V. Toronto, B. Weissbart, D. S. Tinti, and A. L. Balch, Inorg. Chem. 35, 2484 (1996);

    Google Scholar 

  94. B. Weissbart, D. V. Toronto, A. L. Balch, and D. S. Tinti, Inorg. Chem. 35, 2490 (1996).

    Article  Google Scholar 

  95. M. J. Forward, D. Bohmann, J. P. Fackler, Jr., and R. J. Staples, Inorg. Chem. 34, 6330 (1995).

    Article  Google Scholar 

  96. S. D. Hanna and J. I. Zink, Inorg. Chem. 35, 297 (1996).

    Article  Google Scholar 

  97. Z. Assefa, R. J. Staples, and J. P. Fackler, Jr., Inorg. Chem. 33, 2390 (1994).

    Google Scholar 

  98. C. King, M. N. I. Khan, R. J. Staples, and J. P. Fackler, Jr., Inorg. Chem. 31, 3236 (1992).

    Article  Google Scholar 

  99. N. C. Baenziger, K. Dittermore, and J. R. Doyle, Inorg. Chem. 13, 805 (1974).

    Article  Google Scholar 

  100. V. W.-W. Yam and W.-K. Lee, J Chem. Soc., Dalton Trans. 2907 (1993).

    Google Scholar 

  101. P. D. Harvey and H. B. Gray, J. Am. Chem. Soc. 110, 2145 (1988).

    Article  Google Scholar 

  102. T. M. McCleskey and H. B. Gray, Inorg. Chem. 31, 1733 (1992).

    Article  Google Scholar 

  103. M. N. I. Khan, R. J. Staples, C. King, J. P. Fackler, Jr., and R. E.. Winpenny, Inorg. Chem. 32, 5800 (1993).

    Article  Google Scholar 

  104. M. N. I. Khan, C. King, J. P. Fackler, Jr., and R. E. P. Winpenny, Inorg. Chem. 32, 2502 (1993).

    Article  Google Scholar 

  105. J. M. Forward, A. Assefa, and J. P. Fackler, Jr., ] Am. Chem. Soc. 117, 9103 (1995).

    Article  Google Scholar 

  106. R. H. Uang, C. K. Chan, S. M. Peng, and C. M. Che, J. Chem. Soc., Chem. Commun. 2561 (1994).

    Google Scholar 

  107. J. C. Vickery, M. M. Olmstead, E. Y. Fung, and A. L. Balch, Angew. Chem. Int. Ed. Engl. 36, 1178–1181 (1997).

    Article  Google Scholar 

  108. M. A. Mansour, W. B. Connick, R. J. Lachiocotte, H. J. Gysling, and R. Eisenberg, J Am. Chem. Soc. 120, 1329–1330 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Forward, J.M., Fackler, J.P., Assefa, Z. (1999). Photophysical and Photochemical Properties of Gold(l) Complexes. In: Roundhill, D.M., Fackler, J.P. (eds) Optoelectronic Properties of Inorganic Compounds. Modern Inorganic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6101-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6101-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3273-0

  • Online ISBN: 978-1-4757-6101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics