Efficient Photovoltaic Solar Cells Based on Dye Sensitization of Nanocrystalline Oxide Films

  • K. Kalyanasundaram
  • M. Grätzel
Part of the Modern Inorganic Chemistry book series (MICE)


Significant advances in the fields of colloid and sol-gel chemistry in the last two decades now allow fabrication of micro- and nano-sized structures using finely divided monodispersed colloidal particles. 1–7 As we approach the 21st century, there is a growing trend on the part of the scientific community to apply these concepts to develop systems of smaller dimensions. Homogeneous solid (3-D) is giving way to multilayers with quasi-2-D structures and quasi-1-D structures such as nanowires or clusters in an insulating matrix, and finally to porous nanocrystalline films. Nanocrystalline semiconductor films are constituted by a network of mesoscopic oxide or chalocogenide particles such as Ti02, ZnO, Nb2O5, WO3, Ta2O5, CdS, or CdSe, which are interconnected to allow electronic conduction to take place. The pores between the particles are filled with a semiconducting or a conducting medium, such as a p-type semiconductor, a hole transmitter, or an electrolyte, forming a junction of extremely large contact area. In this fashion, the negatively and positively charged contacts of the electric cell become interdigitated on a length scale as small as a few nanometers. Nanostructured materials offer many new opportunities to study fundamental processes in a controlled manner and this in turn leads to fabrication of new devicesm some of which are summarized in Fig. The unique optical and electronic features of these are being exploited to develop optoelectroinc devices such as photoelectrodes in solar cells, photochromic displays/switches, optical switches, chemical sensors, intercallation batteries, capacitor dielectrice/supercapacitors, heat-reflecting and UV-absorbing layers, coatings to improve chemical and mechanical stability of glass, etc. In some recent articles8–10 we have outlined some of these novel applications.
Figure 1

Applications of nanocrystalline mesoporous films.


Solar Cell Redox Mediator Charge Injection Back Contact Redox Electrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. Brinker and C. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego (1990).Google Scholar
  2. 2.
    L. C. Klein, Sol-Gel Optics-Processing and Applications, Kluwer, Boston (1994).CrossRefGoogle Scholar
  3. 3.
    H. D. Gesser and P. C. Goswami, Chem. Rev. 89, 765 (1989).CrossRefGoogle Scholar
  4. 4.
    L. C. Klein, ed., Sol-Gel Technology for Thin Films, Fibres, Preforms, Electronics and Speciality Shapes, Noyes, New Jersey (1988).Google Scholar
  5. 5.
    a) M. Matijevic, Mater. Res. Soc. Bull. 4, 18 (1989); (b) E. Matijevic, Mater. Res. Soc. Bull. 5, 16 (1990); (c) R. Mehrotra, Struc. Bonding 77, 1 (1992).CrossRefGoogle Scholar
  6. 6.
    E. Matijevic, Langmuir 10, 8 (1994); 2, 12 (1986).Google Scholar
  7. 7.
    E. Matijevic, Chem. Mater. 5, 412 (1993); Ann. Rev. Mater. Sci. 15, 485 (1985).Google Scholar
  8. 8.
    T. Gerfin, M. Grätzel, and L. Walder, Progr. Inorg. Chem. 44, 346 (1996).Google Scholar
  9. 9.
    M. Mayor, A. Hagfeldt, M. Grätzel, and L. Walder, Chimia 50, 47 (1996).Google Scholar
  10. 10.
    A. Hagfeldt and M. Grätzel, Chem. Rev. 95, 45 (1995).CrossRefGoogle Scholar
  11. 11.
    A. Fujishima and K. Honda, Nature (London) 238, 37 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    a) M. Grätzel, ed., Energy Resources Through Photochemistry and Catalysis, Academic Press, New York (1983); (b) N. Serpone and E. Pelizzetti, eds., Photocatalysis: Fundamentals and Developments, Wiley, New York (1989).Google Scholar
  13. G. Calzaferri ed., Proceedings of the Xth International Conference on Photochemical Conversion and Storage of Solar Energy, Solar Energy Mater. Sol. Cells 38 (1993).Google Scholar
  14. 14.
    a) A. J. Bard and M. A. Fox, Acc. Chem. Res. 28, 141 (1995); (b) N. Lewis, S. Acc. Chem. Res. 23, 176 (1990); (c) K. Kalyanasundaram, Solar Cells 15, 93 (1985).CrossRefGoogle Scholar
  15. 15.
    E Pechy, E P. Rotzinger, M. K. Nazeeruddin, O. Köhle, S. M. Zakeeruddin, R. Humphry-Baker, and M. Grätzel, J. Chem. Soc., Chem. Commun. 65 (1995).Google Scholar
  16. 16.
    M. K. Nazeeruddin, A. Kay, J. Rodicio, R. Humphry-baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993).CrossRefGoogle Scholar
  17. 17.
    B. O’Regan and M. Grätzel, Nature (London) 335, 737 (1991).CrossRefGoogle Scholar
  18. 18.
    M. K. Nazeeruddin, P. Liska, J. Moser, N. Vlachopoulos, and M. Grätzel, Helv. Chim. Acta 73, 1788 (1990).CrossRefGoogle Scholar
  19. 19.
    N. Vlachopoulos, P. Liska, J. Augustynski, and M. Grätzel, J Am. Chem. Soc. 110, 1216 (1998).CrossRefGoogle Scholar
  20. 20.
    P Liska, N. Vlachopoulos, M. K. Nazeeruddin, P. Comte, and M. Grätzel, J Am. Chem. Soc. 110, 3686 (1988).CrossRefGoogle Scholar
  21. 21.
    J. DeSilvestro, M. Grätzel, L. Kavan, J. Moser, and J. Augustynski, J. Am. Chem. Soc. 107, 2988 (1985).CrossRefGoogle Scholar
  22. 22.
    R. Amadelli, R. Argazzi, C. A. Bignozzi, and E Scandola, J. Am. Chem. Soc. 112, 7099 (1990).CrossRefGoogle Scholar
  23. 23.
    a) T. A. Heimer, C. A. Bignozzi, and G. J. Meyer, J. Phys. Chem. 97, 11987 (1993); (b) R. Argazzi, C. A. Bignozzi, T. A. Heimer, E N. Castellano, and G. J. Meyer, Inorg. Chem. 33, 5741 (1994); (c) C. A. Bignozzi, R. Argazzi, J. R. Schoonover, G. J. Meyer, and E Scandola, Solar Energy Mater. Sol. Cells 38, 187 (1995).CrossRefGoogle Scholar
  24. 24.
    K. Murakoshi, G. Kano, Y. Wada, S. Yanagida, H. Miyazaki, M. Matsumoto, and S. Murasawa, J. Electroanal. Chem. 396, 27 (1995).CrossRefGoogle Scholar
  25. 25.
    a) A. Hagfeldt, S. Lindquist, and M. Grätzel, Sol. Energy Mater. Sol. Cells 32, 245 (1993); (b) A. Hagfeldt, B. Didriksson, T. Palmquist, H. Lindström, S. Sodergren, H. Rensmo, and S.-E. Lindquist, Solar Energy Mater. Sol. Cells 31, 481 (1994).CrossRefGoogle Scholar
  26. 26.
    R. Knödler, J. Sopka, E Harbach, and H. W. Grünling, Sol. Energy Mater. Sol. Cells 30, 277 (1993).CrossRefGoogle Scholar
  27. 27.
    a) G. Smestad, C. A. Bignozzi, and R. Argazzi, Sol. Energy Mater. Sol. Cells 32, 259 (1994); G. Smestad, ibid. 32, 273 (1994).Google Scholar
  28. 28.
    T. H. James, ed., Theory of Photographic Processes, 4th edn., MacMillan Press, New York (1977).Google Scholar
  29. 29.
    J. W Weigl, Angew. Chem., Int. Engl. 16, 374 (1977).CrossRefGoogle Scholar
  30. 30.
    E Willig and H. Gerischer, Top. Curr. Chem. 61, 31 (1976).CrossRefGoogle Scholar
  31. 31.
    R. Memming, in Photochemistry and Photophysics, J. E Rabek,.ed., CRC Press, Boca Raton (1992).Google Scholar
  32. 32.
    B. A. Parkinson and M. T. Spitler, Electrochim. Acta 37, 943 (1992).CrossRefGoogle Scholar
  33. 33.
    K. Kalyanasundaram, Photochemistry ofPolypyridine and Porphyrin Complexes, Academic Press, New York (1992).Google Scholar
  34. 34.
    a) M. Roundhill, Photophysics and Photochemistry of Coordination Compounds, VCH Publishers, New York (1994); (b) J. Sykora and J. Sima, Photochemistry of Coordination Compounds, Elsevier, Amsterdam (1990).Google Scholar
  35. 35.
    A. Juris, V Balzani, E Barigeletti, S. Campagna, P. Belzer, and A. V. Zelewski, Coord. Chem. Rev. 85, 85 (1988).CrossRefGoogle Scholar
  36. 36.
    C. J. Barbé, E Arendse, P. Comte, M. Jirousek, E Lenzmann, V. Shklover, and M. Grätzel, J Am. Ceram. Soc. 80, 3157 (1997).CrossRefGoogle Scholar
  37. 37.
    A. Kay, Solar Cells Based on Dye-sensitized Nanocrystalline TiO 2 Electrodes, Ph.D. Dissertation, Ecole Polytechnique Federale de Lausanne, #1214 (1994).Google Scholar
  38. 38.
    Q. Xu and M. A. Anderson, J. Am. Ceram. Soc. 77, 1939 (1977).CrossRefGoogle Scholar
  39. 39.
    L. Kavan, M. Grätzel, J. Rathousky, and A. Zukal, J. Electrochem. Soc. 143, 394 (1996).CrossRefGoogle Scholar
  40. 40.
    L. Kavan, M. Grätzel, S. E. Gilbert, G. Klemens, and H. J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996).CrossRefGoogle Scholar
  41. 41.
    L. Kavan and M. Grätzel, Electrochim. Acta 40, 643 (1995).CrossRefGoogle Scholar
  42. 42.
    L. Kavan, K. Kratochvilova, and M. Grätzel, J. Electroanal. Chem. 394, 93 (1995).CrossRefGoogle Scholar
  43. 43.
    L. Kavan, A. Kay, B. O’Regan, and M. Grätzel, J. Electroanal. Chem. 346, 291 (1993).CrossRefGoogle Scholar
  44. 44.
    L. Kavan, T. Stoto, M. Grätzel, D. Fitzmaurice, and V. Shklover, J. Phys. Chem. 97, 9493 (1993).CrossRefGoogle Scholar
  45. 45.
    B. O’Regan, J. Moser, M. A. Anderson, and M. Grätzel, J. Phys. Chem. 94, 8720 (1990).CrossRefGoogle Scholar
  46. 46.
    J. Moser and M. Grätzel, J. Am. Chem. Soc. 105, 6542 (1983).CrossRefGoogle Scholar
  47. 47.
    M. A. Fox and M. Channon, eds., Photoinduced Electron Transfer, Elsevier, Amsterdam (1988).Google Scholar
  48. 48.
    M. Grätzel and K. Kalyanasundaram, in Photosensitization and Photocatalysis using Inorganic and Organometallic Compounds, K. Kalyanasundaram and M. Grätzel, eds., pp. 247–271, Kluwer Academic, Dordrecht (1993).Google Scholar
  49. 49.
    J. Moser, S. Punchihewa, P. P. Infelta, and M. Grätzel, Langmuir 7, 3012 (1991).CrossRefGoogle Scholar
  50. 50.
    V. Houlding and M. Grätzel,. 1 Am. Chem. Soc. 105, 5695 (1983).CrossRefGoogle Scholar
  51. 51.
    E. Vrachnou, N. Vlachopoulos, and M. Grätzel, J Chem. Soc., Chem. Commun. 868 (1987).Google Scholar
  52. 52.
    H. Frei, D. Fitzmaurice, and M. Grätzel, Langmuir 6, 198 (1990).CrossRefGoogle Scholar
  53. 53.
    B. O’Regan and D. T. Schwarz, Chem. Mater. 7, 1349 (1995).CrossRefGoogle Scholar
  54. 54.
    K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, and R Sirimane, Semicond. Sci. Tech. 10, 1689 (1995).ADSCrossRefGoogle Scholar
  55. 55.
    K. Kalyanasundaram and Md. K. Nazeeruddin, Chem. Phys. Lett. 93, 292 (1992).ADSCrossRefGoogle Scholar
  56. 56.
    a) Md. K. Nazeeruddin and K. Kalyanasundaram, Inorg. Chem. 29, 1888 (1990); (b) K. Kalyanasundaram, M. Grätzel, and Md. K. Nazeeruddin, J. Phys. Chem. 96, 5865 (1992); (c) K. Kalyanasundaram and Md. K. Nazeeruddin, J Chem. Soc., Dalton Trans. 1657 (1990).Google Scholar
  57. 57.
    a) K. Matsui, Md. K. Nazeeruddin, R. Humphry-Baker, M. Grätzel, and K. Kalyanasundaram, J. Phys. Chem. 96 10587 (1992); (b) K. Matsui, Md. K. Nazeeruddin, R. Humphry-Baker, N. Vlachopoulos, M. Grätzel, R. E. Hester, and K. Kalyanasundaram, to appear.Google Scholar
  58. 58.
    S. M. Zakeeruddin, Md. K. Nazeeruddin, P. Pechy, F. P. Rotzinger, R. Humphry-Baker, K. Kalyanasundaram, and M. Grätzel, to appear.Google Scholar
  59. 59.
    E. Müller, Md. K. Nazeeruddin, M. Grätzel, and K. Kalyanasundaram, New J Chem. 20, 759 (1996).Google Scholar
  60. 60.
    a) E Scandola, M. T. Indelli, C. Chiorboli, and C. A. Bignozzi, Top. Curr. Chem. 158, 73 (199x); (b) C. A. Bignozzi and E Scandola, in Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds, K. Kalyanasundaram and M. Grätzel, eds., Kluwer Academic, Dordrecht (1993).Google Scholar
  61. 61.
    H. Tributsch and E Willig, Solar Energy Mater. Sol. Cells 38, 355 (1995).CrossRefGoogle Scholar
  62. 62.
    J. Moser and M. Grätzel, Chem. Phys. 176, 493 (1993).ADSCrossRefGoogle Scholar
  63. 63.
    R. Eichberger and E Willig, Chem. Phys. 141, 159 (1990).CrossRefGoogle Scholar
  64. 64.
    F. Willig, J. Am. Chem. Soc. 112, 2702 (1990).CrossRefGoogle Scholar
  65. 65.
    J. M. Lanzafame, S. Palese, D. Wang, R. J. D. Miller, and A. Muenter, J. Phys. Chem. 98, 11020 (1994).CrossRefGoogle Scholar
  66. 66.
    D. Liu and P. V. Kamat, J Phys. Chem. 97, 10769 (1993).CrossRefGoogle Scholar
  67. 67.
    J. M. Rehm, G. L. McLendon, Y. Nagasawa, K. Yoshihara, J. Moser, and M. Grätzel, J. Phys. Chem. 100, 9577 (1996).CrossRefGoogle Scholar
  68. 68.
    J. Moser, M. Grätzel, J. R. Durrant, and D. R. Klug, in Femtochemistry, Ultrafast Chemical and Physical Processes in Molecular Systems, M. Chergui, ed., p. 495, World Scientific, Singapore (1996).Google Scholar
  69. 69.
    S. G. Yan and J. T. Hupp, J Phys. Chem. 100, 6867 (1996).CrossRefGoogle Scholar
  70. 70.
    S.-Y. Huang, L. Kavan, I. Exnar, and M. Grätzel, J. Electrochem. Soc. 142, L142 (1995).CrossRefGoogle Scholar
  71. 71.
    S.-Y. Huang, L. Kavan, A. Kay, M. Grätzel, and I. Exnar, Active and Passive Elec. Comp. 19, 23 (1995).CrossRefGoogle Scholar
  72. 72.
    G. Redmond and D. Fitzmaurice, J. Phys. Chem. 97, 11081 (1993).CrossRefGoogle Scholar
  73. 73.
    A. Hagfeldt, N. Vlachopoulos, and M. Grätzel, J. Electrochem. Soc. 142, L82 (1994).CrossRefGoogle Scholar
  74. 74.
    I. Bedja, S. Hotchandani, and P. V. Kamat, J. Phys. Chem. 97, 11064 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • K. Kalyanasundaram
    • 1
  • M. Grätzel
    • 1
  1. 1.Laboratory for Photonics and InterfacesSwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations