Advertisement

Organometallics for Nonlinear Optics

  • Nicholas J. Long
Chapter
Part of the Modern Inorganic Chemistry book series (MICE)

Abstract

The importance of nonlinear optical phenomena has been known for some time; however, since the mid-1980s, there has been an explosion of interest in searching for and developing nonlinear optical materials that possess commercial device applications. To date, the systems have been utilized in information processing, optical switching, optical frequency conversion, and telecommunications and, with the advancing development of optotechnology, burgeoning demands for suitable materials are becoming apparent. Photons can carry information faster, more efficiently, and over longer distances (with less signal degradation and more efficiently) than electrons and, as a result, photonics will begin to take over from electronics in information and communication technologies. During this transition, the hybrid technology of optoelectronics—in which electrons interface with photons—will become increasingly important.

Keywords

Second Harmonic Generation Third Harmonic Generation Second Harmonic Generation Signal Second Harmonic Generation Efficiency Chromium Tricarbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symposium Series, Vol. 233, ACS, Washington D.C. (1983).Google Scholar
  2. 2.
    S. R. Marder, J. E. Sohn, and G. D. Stucky, eds., Materials for Nonlinear Optics: Chemical Perspectives, ACS Symposium Series, Vol. 455, ACS, Washington D.C. (1991).Google Scholar
  3. 3.
    D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2, Academic Press, New York (1987).Google Scholar
  4. 4.
    a) P A. Franken, A. E. Hill, and C. W. Peters, Phys. Chem. Rev. 7, 118 (1961); (b) R. C. Miller, D. A. Kleinman, and A. Savage, Phys. Rev. Lett. 11, 146 (1963); (c) R. C. Miller, Phys. Rev. Lett. 5, 17 (1964); (d) G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, Appl. Phys. Lett. 5, 234 (1964); (e) R. C. Miller, G. D. Boyd, and A. Savage, Appl. Phys. Lett. 6, 77 (1965); (1) C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986).Google Scholar
  5. 5.
    A. Ashkin, G. D. Boyd, J. M. Dziezik, R. G. Smith, A. A. Ballman, and K. Nassan, App!. Phys. Lett. 9, 72 (1966).ADSGoogle Scholar
  6. 6.
    a) L. L. Chang and K. Ploog, eds., Molecular Beam Epitaxy and Heterostructures, Nijhoff, Netherlands (1985); (b) K. Ploog, Angew. Chem. Adv. Mater. 101, 839 (1989); Angew. Chem., Int. Ed. Engl., Adv. Mater. 28, 819 (1989).Google Scholar
  7. 7.
    A. M. Glass, Mater. Res. Soc. Bull. 16 (1988).Google Scholar
  8. 8.
    Y. X. Fan, R. C. Eckhardt, R. L. Byer, R. K. Route, and R. S. Fiegelson, Appl. Phys. Lett. 45, 313 (1984).ADSGoogle Scholar
  9. 9.
    a) G. F. Lipscomb, A. E Garrito, and R. S. Narang, J. Chem. Phys. 75, 1509 (1981); (b) J. C. Baumert, R. J. Twieg, G. C. Bjorklund, J. A. Logan, and C. W. Dirk, App!. Phys. Lett. 51, 1484 (1987); (c) P. G. Hugard, W. Blau, and D. Schweitzer, Appl. Phys. Lett. 51, 2183 (1987); (d) J. Zyss, J. Mol. Electron. 1, 24 (1985); (e) C. Dehu, E Meyers, and J. L. Bredas, J. Am. Chem. Soc. 115, 6198 (1993).Google Scholar
  10. 10.
    P. N. Prasad and D. R. Ulrich, eds., Nonlinear Optical and Electroactive Polymers, Plenum Press, New York (1988).Google Scholar
  11. 11.
    G. Khanarian, ed., Nonlinear Optical Properties of Organic Molecules, p. 971, SPIE, Bellingham, WA (1988).Google Scholar
  12. 12.
    R. A. Hann and B. Bloor, eds., Organic Materials for Nonlinear Optics, Spec. Publ. 69, Royal Soc. Chem., London (1989).Google Scholar
  13. 13.
    a) B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, Opt. Spectrosc. 30, 274 (1970); (b) B. L. Davydov, V. V. Dunina, V. F. Zolin, and L. G. Koreneva, Opt. Spectrosc. 34, 150 (1973).Google Scholar
  14. 14.
    J. L. Oudar, J. Chem. Phys. 67, 446 (1977).ADSGoogle Scholar
  15. 15.
    a) J. L. Oudar and D. S. Chemla, J. Chem. Phys. 66, 2664 (1977); (b) L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J Phys. Chem. 95, 10631 (1991).Google Scholar
  16. 16.
    B. E Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch, and J. L. Bernstein, J. Appl. Phys. 50, 2523 (1979).Google Scholar
  17. 17.
    G. R. Meredith, ACS Symp. Ser. 233, 27 (1983).Google Scholar
  18. 18.
    a) C. Ye, N. Minami, T. J. Marks, J. Yang, and G. K. Wong, Macromolecules 21, 2901 (1988); (b) H. L. Hampsch, J. Yang, C. K. Wong, and J. M. Torkelson, Macromolecules 21, 526 (1988); (c) G. R. Meredith, J. G. Van Dusen, and D. J. Williams, Macromolecules 15, 1385 (1982).Google Scholar
  19. 19.
    R. Popovitz-Biro, K. Hill, E. M. Landau, M. Lahav, L. Leisorowitz, and J. Sagiv, J. Am. Chem. Soc. 110, 2672 (1988); (b) G. H. Cross, I. R. Peterson, I. R. Girling, N. A. Cade, M. J. Goodwin, N. Can, R. S. Sethi, R. Marsen, G. W. Gray, D. Lacey, M. McRoberts, R. M. Scrowston, and K. J. Toyne, Thin Solid Films 156, 39 (1988); (c) T. Richardson, C. G. Roberts, M. E. C. Polywka, and S. G. Davies, Thin Solid Films 160, 231 (1988); (d) I. Ledoux, P. Fremaux, J. P. Piel, G. Post, J. Zyss, T. McLean, R. A. Hann, P. F. Gordon, and S. Allen, Thin Solid Films 160, 217 (1988); (e) J. D. Swalen, Thin Solid Films 160, 197 (1988).Google Scholar
  20. 20.
    S. R. Marder, Science 263, 511 (1994); S. R. Marder, J. W. Perry, B. G. Tiemann, C. B. Gorman, S. Gilmour, S. L. Biddle, and G. Bourhill, J. Am. Chem. Soc. 115, 2524 (1993).Google Scholar
  21. 21.
    Z. Liang, L. R. Dalton, S. M. Garner, S. Kalluri, A. Chen, and W. H. Steier, Chem. Mater. 7, 1756 (1995).Google Scholar
  22. 22.
    Y. M. Cai and A. K.-Y. Jen, Appl. Phys. Lett. 67, 299 (1995).ADSGoogle Scholar
  23. 23.
    R. Dagani, Chem. Eng. News Mar. 4, 22 (1996); R. Dagani, Chem. Eng. News Feb. 7, 26 (1994); E. Wilson, Chem. Eng. News Aug. 14, 27 (1995).Google Scholar
  24. 24.
    C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, L. H. Baughman, and R. R. Chance, Phys. Rev. Lett. 36, 956 (1976).ADSGoogle Scholar
  25. 25.
    G. N. Patel, J. Polym. Sci., Polym. Lett. 16, 609 (1978).Google Scholar
  26. 26.
    P N. Prasad and D. J. Williams, Nonlinear Optical Effects in Molecules and Polymers,Wiley, New York (1991).Google Scholar
  27. 27.
    S. K. Kurtz, in Nonlinear Optical Materials—Laser Handbook, Vol. 1, E T. Arecchi and E. O. Schultz-DuBois, eds., p. 923, North-Holland, Amsterdam (1972).Google Scholar
  28. 28.
    S. Singh, in Handbook of Laser Science and Technology, Part 2, R. J. Pressley, ed., p. 3, Chem. Rubber Co. Press, Boca Raton (1971).Google Scholar
  29. 29.
    J. Zyss, J. Non-Cryst. Solids 47, 211 (1982).ADSGoogle Scholar
  30. 30.
    D. J. Williams, Angew. Chem. 96, 637 (1984); Angew. Chem., Int. Ed. Engl. 23, 690 (1984).Google Scholar
  31. 31.
    S. Tripathy, E. Cavicchi, J. Kumar, and R. S. Kumar, Chemtech 19, 747 (1989).Google Scholar
  32. 32.
    C. Flytzanis and J. L. Oudar, Nonlinear Optics Materials and Devices, Springer, New York (1986).Google Scholar
  33. 33.
    G. R. Meredith, Mater. Res. Soc. Bull. 24 (1988).Google Scholar
  34. 34.
    H. S. Nalwa, T. Watanabe, and S. Miyata, in Photochemistry and Photophysics, Vol. 5, J. E Rubek and G. W. Scott, eds., Chem. Rubber Co. Press, Boca Raton (1991).Google Scholar
  35. 35.
    T. J. Marks and M. A. Ratner, Angew. Chem. 107, 167 (1995); Angew. Chem., Int. Ed. Engl. 34, 155 (1995).Google Scholar
  36. 36.
    D. M. Burland, Chem. Rev. 94, 1 (1994).Google Scholar
  37. 37.
    D. R. Kanis, M. A. Ratner, and T. J. Marks, Chem. Rev. 94, 195 (1994).Google Scholar
  38. 38.
    H. S. Nalwa, Appl. Organomet. Chem. 5, 349 (1991).Google Scholar
  39. 39.
    S. R. Marder, in Inorganic Materials, D. W. Bruce and D. O’Hare, eds., p. 136, Wiley, Chichester (1992).Google Scholar
  40. 40.
    N. J. Long, Angew. Chem. 34, 21 (1995); Angew. Chem., Int. Ed. Engl. 107, 37 (1995).Google Scholar
  41. 41.
    J. C. Calabrese, L.-T. Cheng, J. C. Green, S. R. Marder, and W. Tam, J. Am. Chem. Soc. 113, 7227 (1991).Google Scholar
  42. 42.
    C. C. Frazier, M. A. Harvey, M. P. Cockerham, H. M. Hand, E. A. Chauchard, and C. H. Lee, J. Phys. Chem. 90, 5703 (1986).Google Scholar
  43. 43.
    G. L. Geoffrey and M. S. Wrighton, Organometallic Photochemistry, Academic Press, New York (1979).Google Scholar
  44. 44.
    B. J. Coe, C. J. Jones, J. A. McCleverty, D. Bloor, P. V. Kolinsky, and R. J. Jones, J Chem. Soc., Chem. Commun. 1485 (1989).Google Scholar
  45. 45.
    B. E Levine and C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).ADSGoogle Scholar
  46. 46.
    C. Flytzanis, in Quantum Electronics: A Treatise, Vol. 1, H. Rabin and C. L. Tang, eds., Academic Press, New York (1975).Google Scholar
  47. 47.
    S. K. Kurtz and T. T. Perry, J. Appl. Phys. 39, 3798 (1968).ADSGoogle Scholar
  48. 48.
    J. P. Dougherty and S. K. Kurtz, J. Appl. Crystallogr. 9, 145 (1976).Google Scholar
  49. 49.
    J. M. Halbout, S. Blit, and C. L. Tang, IEEE J Quantum Electron. QE-17, 513 (1981).Google Scholar
  50. 50.
    M. J. Rosker and C. L. Tang, IEEE J Quantum Electron. QE-20, 334 (1984).Google Scholar
  51. 51.
    J. W. Perry, ACS Symp. Ser. 455, 71 (1991).Google Scholar
  52. 52.
    K. D. Singer and A. E Garito, J. Chem. Phys. 75, 3572 (1981).ADSGoogle Scholar
  53. 53.
    J. L. Oudar and H. Le Person, Opt. Commun. 15, 258 (1975).ADSGoogle Scholar
  54. 54.
    B. F. Levine and C. G. Bethea, Appl. Phys. Lett. 24, 445 (1974).ADSGoogle Scholar
  55. 55.
    L.-T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, J. Phys. Chem. 95, 10643 (1991).Google Scholar
  56. 56.
    C. G. Bethea, Appl. Opt. 14, 1447 (1975).ADSGoogle Scholar
  57. 57.
    R. S. Finn and J. E Ward, Phys. Rev. Lett. 26, 285 (1971).ADSGoogle Scholar
  58. 58.
    B. G. Tiemann, L.-T. Cheng, and S. R. Marder, J. Chem. Soc., Chem. Commun. 735 (1993).Google Scholar
  59. 59.
    K. Clays and A. Persoons, Rev. Sci. Instrum. 63, 3285 (1992).ADSGoogle Scholar
  60. 60.
    K. Clays and A. Persoons, Phys. Rev. Lett. 66, 2980 (1991); K. Clays, A. Persoons, and L. De Maeyer, Adv. Chem. Phys. 85, 465 (1994).Google Scholar
  61. 61.
    W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, Nature 363, 58 (1993).ADSGoogle Scholar
  62. 62.
    W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, Proc. SPIE Int. Soc. Opt. Eng. 2143, 14 (1994).Google Scholar
  63. 63.
    I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, Rev. Sci. Inst. (1996) 67, 1445.ADSGoogle Scholar
  64. 64.
    E. Kajzar and J. Messier, Phys. Rev. A 32, 2352 (1985).ADSGoogle Scholar
  65. 65.
    P. D. Maker and R. W. Terhune, Phys. Rev. A 137, 801 (1965).ADSGoogle Scholar
  66. 66.
    E N. Prasad, ACS Symp. Ser. 455, 50 (1991).Google Scholar
  67. 67.
    R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).ADSGoogle Scholar
  68. 68.
    M. D. Levenson, IEEE J. Quantum Electron. 10, 110 (1974).ADSGoogle Scholar
  69. 69.
    H. Kambara, H. Kobayashi, and K. Kubodera, IEEE Photonics Tech. Lett. 1, 149 (1989).ADSGoogle Scholar
  70. 70.
    I. P. Kaminov, An Introduction to Electro-Optic Devices, Academic Press, New York (1974).Google Scholar
  71. 71.
    P. D. Maker, R. W. Terhune, N. Nisenhoff, and C. M. Savage, Phys. Rev. Lett. 8, 21 (1962).ADSGoogle Scholar
  72. 72.
    S. K. Kurtz, in Quantum Electronics, H. Rabin and C. L. Tang, eds., Academic Press, New York (1975).Google Scholar
  73. 73.
    J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).ADSGoogle Scholar
  74. 74.
    B. E Levine and C. G. Bethea, J. Chem. Phys. 66, 1070 (1977).ADSGoogle Scholar
  75. 75.
    S. J. Lalama and A. E Garito, Phys. Rev. A 20, 1179 (1979).ADSGoogle Scholar
  76. 76.
    Recent examples: (a) S. R. Marder, C. B. Gorman, B. G. Tiemann, and L.-T. Cheng, J. Am. Chem. Soc. 115 3006 (1993); (b) S. R. Marder, L.-T. Cheng, and B. G. Tiemann, J. Chem. Soc., Chem. Commun. 672 (1992); (c) A. E. Stiegman, E. Graham, K. J. Perry, L. R. Khundkar, J. W. Perry, and L.-T. Cheng, J. Am. Chem. Soc. 113 7568 (1991); (d) V P. Rao, A. K.-Y. Jen, K. Y. Wong, and K. J. Drost, J. Chem. Soc., Chem. Commun. 1119 (1993); H. Higuchi, T. Nakayama, H. Koyama, J. Ojima, T. Wada, and H. Sasabe, Bull. Chem. Soc. Jpn. 68 2363 (1995).Google Scholar
  77. 77.
    S. R. Marder, D. N. Beratan, and L.-T. Cheng, Science, 252, 103 (1991).ADSGoogle Scholar
  78. 78.
    M. Stahelin, D. M. Burland, and J. E. Rice, Chem. Phys. Lett. 191, 245 (1992).ADSGoogle Scholar
  79. 79.
    S. Ramasesha and P. K. Das, Chem. Phys. 145, 343 (1990).Google Scholar
  80. 80.
    S. R. Marder, L.-T. Cheng, C. G. Gorman, and B. G. Tiemann, Proc. SPIE Int. Soc. Opt. Eng. 1775, 19 (1993).Google Scholar
  81. 81.
    S. M. Risser, D. N. Beratan, and S. R. Marder, J. Am. Chem. Soc. 115, 7719 (1993).Google Scholar
  82. 82.
    J. E Nicoud and R. J. Twieg, in Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2, D. S. Chemla and J. Zyss, eds., p. 226, Academic Press, New York (1987).Google Scholar
  83. 83.
    R. A. Huijts and G. L. J. Hasselink, J. Chem. Phys. Lett. 156, 209 (1989).ADSGoogle Scholar
  84. 84.
    M. Barzoukas. M. Blanchard-Desce, D. Josse, J.-M. Lehn, and J. Zyss, J. Chem. Phys. 133, 323 (1989).Google Scholar
  85. 85.
    D. R. Kanis, M. A. Ratner, and T. J. Marks, J. Am. Chem. Soc. 114, 10338 (1992).Google Scholar
  86. 86.
    D. R. Kanis, P. G. Lacroix, M. A. Ratner, and T. J. Marks, J. Am. Chem. Soc. 116, 10089 (1994); J. Zyss, Chem. Phys. 98, 6583 (1993).Google Scholar
  87. 87.
    P. G. Lacroix, S. Di Bella, and I. Ledoux, Chem. Mater. 8, 541 (1996).Google Scholar
  88. 88.
    C. Dehu, F. Meyers, and J. L. Bredas, J Am. Chem. Soc. 115, 6198 (1993).Google Scholar
  89. 89.
    D. R. Kanis, M. A. Ratner, and T. J. Marks, J. Am. Chem. Soc. 112, 8203 (1990); D. R. Kanis, P. G. Lacroix, M. A. Ratner, and T. J. Marks, J. Am. Chem. Soc. (1994). 116, 10089.Google Scholar
  90. 90.
    C. Hansch, A. Leo, and R. W. Taft, Chem. Rev. 91, 165 (1991).Google Scholar
  91. 91.
    J. Zyss, J. E Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).ADSGoogle Scholar
  92. 92.
    R. W. Twieg and K. Jain, ACS Symp. Ser. 233, 57 (1983).Google Scholar
  93. 93.
    J. Zyss and G. Berthier, J. Chem. Phys. 77, 3635 (1982).ADSGoogle Scholar
  94. 94.
    M. C. Etter and G. M. Frankenbach, Chem. Mater. 1, 10 (1989).Google Scholar
  95. 95.
    T. W. Panunto, Z. Urbanczk-Lipowska, R. Johnson, and M. C. Etter, J. Am. Chem. Soc. 109, 7786 (1987); C. B. Aakröy, G. S. Bahra, P. B. Hitchcock, Y. Patell, and K. R. Seddon, J. Chem. Soc., Chem. Commun. 152 (1993).Google Scholar
  96. 96.
    S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 626 (1989).ADSGoogle Scholar
  97. 97.
    S. R. Marder, J. W. Perry, B. G. Tiemann, R. E. Marsh, and W. P. Schaefer, Chem. Mater. 2, 685 (1990).Google Scholar
  98. 98.
    W. Tam, D. E Eaton, J. C. Calabrese, I. D. Williams, Y. Wang, and A. G. Anderson, Chem. Mater. 1, 128 (1989).Google Scholar
  99. 99.
    Y. Wang and D. F. Eaton, Chem. Phys. Lett. 120, 441 (1985); G. van de Goor, K. Hoffmann, S. Kalhus, E Marlow, E Schuth, and P. Behrens, Adv. Mater. 8, 65 (1996).Google Scholar
  100. 100.
    S. Tomaru, S. Zembutsu, M. Kawachi, and M. Kobayashi, J. Chem. Soc., Chem. Commun. 1207 (1984).Google Scholar
  101. 101.
    S. D. Cox, T. E. Gier, J. D. Bierlein, and G. D. Stucky, J. Am. Chem. Soc. 110, 2986 (1989).Google Scholar
  102. 102.
    J. Hulliger, O. König, and R. Hoss, Adv. Mater. 8, 719 (1995).Google Scholar
  103. 103.
    V. V. Shelkovikov, E A. Zhuravlev, N. A. Orlova, A. I. Plekhanov, and V. Safonov, J. Mater. Chem. 5, 1331 (1995).Google Scholar
  104. 104.
    N. Okamoto, T. Abe, D. Chen, H. Fujimara, and R. Matsushima, Opt. Commun. 74, 421 (1990).ADSGoogle Scholar
  105. 105.
    J. Zyss, D. S. Chemla, and J. E Nicoud, J. Chem. Phys. 74, 4800 (1981).ADSGoogle Scholar
  106. 106.
    M. L. H. Green, S. R. Marder, M. E. Thompson, J. A. Bandy, D. Bloor, P. V. Kolinsky, and R. J. Jones, Nature 330, 360 (1987).ADSGoogle Scholar
  107. 107.
    J. A. Bandy, H. E. Bunting, M. L. H. Green, S. R. Marder, M. E. Thompson, D. Bloor, P. V. Kolinsky, and R. J. Jones, in Organic Materials for Nonlinear Optics, Spec. Publ. No. 69, R. A. Hann and D. Bloor, eds., p. 219, Royal Soc. Chem., London (1989).Google Scholar
  108. 108.
    S. R. Marder, J. W. Perry, W. P. Schaefer, B. G. Tiemann, P. C. Groves, and K. J. Perry, Proc. SPIE Int. Soc. Opt. Eng. 1147, 108 (1989).Google Scholar
  109. 109.
    S. R. Marder, J. W. Perry, B. G. Tiemann, and W. P. Schaefer, Organometallics 10, 1896 (1991).Google Scholar
  110. 110.
    L.-T. Cheng, W. Tam, G. R. Meredith, and S. R. Marder, Mol. Cryst. Liq. Cryst. 189, 137 (1990).Google Scholar
  111. 111.
    S. R. Marder, B. G. Tiemann, J. W. Perry, L.-T. Cheng, W. Tam, W. P. Schaefer, and R. E. Marsh, ACS Symp. Ser. 455, 636 (1991).Google Scholar
  112. 112.
    S. R. Marder, J. W. Perry, and C. P. Yakymyshyn, Chem. Mater. 6, 1137 (1994).Google Scholar
  113. 113.
    A. Houlton, N. Jassim, R. M. G. Roberts, J. Silver, D. Cunningham, P. McArdle, and T. Higgins, J. Chem. Soc., Dalton Trans. 2235 (1992).Google Scholar
  114. 114.
    A. Houlton, J. R. Miller, J. Silver, N. Jassim, M. J. Ahmed, T. L. Axon, D. Bloor, and G. H. Cross, Inorg. Chim. Acta 205, 67 (1993).Google Scholar
  115. 115.
    B. J. Coe, J. D. Foulon, T. A. Hamor, C. J. Jones, and J. A. McCleverty, Acta Crystallogr. C 47, 2032 (1991).Google Scholar
  116. 116.
    A. Benito, J. Cano, R. Martinez-Manez, J. Paya, J. Soto, M. Julve, E Lloret, M. D. Marcos, and E. Sinn, J. Chem. Soc., Dalton Trans. 1999 (1993).Google Scholar
  117. 117.
    J. W Perry, A. E. Stiegman, S. R. Marder, and D. R. Coulter, in Organic Materials for Nonlinear Optics, Spec. Publ. No. 69, R. A. Hann and D. Bloor, eds., p. 189, Royal Soc. Chem., London (1989).Google Scholar
  118. 118.
    J. W Perry, A. E. Stiegman, S. R. Marder, D. R. Coulter, D. N. Beratan, D. E. Brima, E L. Klavetter, and R. H. Grubbs, Proc. SPIE Int. Soc. Opt. Eng. 971, 17 (1988).ADSGoogle Scholar
  119. 119.
    B. J. Coe, C. J. Jones, J. A. McCleverty, D. Bloor, and G. H. Cross, J Organomet. Chem. 464, 225 (1994).Google Scholar
  120. 120.
    A. Togni and G. Rihs, Organometallics 12, 3368 (1993).Google Scholar
  121. 121.
    G. Doisneau, G. Balavoine, T. E Fillebeen-Khan, J.-C.Clinet, J. Delaire, I. Ledoux, R. Loucif, and G. Puccetti, J. Organomet. Chem. 421, 299 (1991); R. Loucif-Saibi, J. A. Delaire, L. Bonazzola, G. Doisneau, G. Balavoine, T. Fillebeen-Khan, I. Ledoux, and G. Puccetti, Chem. Phys. 167, 369 (1992).Google Scholar
  122. 122.
    M. E. Wright and S. A. Svejda, ACS Symp. Ser. 455, 602 (1991).Google Scholar
  123. 123.
    G. Cooke, H. M. Palmer, and O. Schulz, Synthesis 1415 (1995).Google Scholar
  124. 124.
    M. E. Wright, E. G. Toplikar, R. E Kubin, and M. D. Saltzer, Macromolecules 25, 1838 (1992).ADSGoogle Scholar
  125. 125.
    U. Behrens, H. Brussaard, U. Hagenau, J. Heck, E. Hendrickx, J. Kornich, J. G. M. van der Linden, A. Persoons, A. L. Spek, N. Veldman, B. Voss, and H. Wong, Chem. Eur. J. 2, 98 (1996).Google Scholar
  126. 126.
    E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J. L. Bredas, J Am. Chem. Soc. 117, 3547 (1995).Google Scholar
  127. 127.
    K. Alagesan, P. C. Ray, P. K. Das, and A. G. Samuelson, Current Sci. 70, 69 (1996).Google Scholar
  128. 128.
    J. A. Bandy, H. E. Bunting, M. H. Garcia, M. L. H. Green, S. R. Marder, M. E. Thompson, D. Bloor, P. V. Kolinsky, R. J. Jones, and J. W. Perry, Polyhedron 11, 1429 (1992).Google Scholar
  129. 129.
    A. R. Dias, M. H. Garcia, M. P. Robalo, M. L. H. Green, K. K. Lai, A. J. Pulham, S. M. Klueber, and G. Balavoine, J. Organomet. Chem. 453, 241 (1993).Google Scholar
  130. 130.
    A. R. Dias, M. H. Garcia, J. C. Rodrigues, M. L. H. Green, and S. M. Kuebler, J. Organomet. Chem. 475, 241 (1994).Google Scholar
  131. 131.
    I. R. Whittal, M. P. Cifuentes, M. J. Costigan, M. G. Humphrey, S. C. Goh, B. W. Skelton, and A. H. White, J Organomet. Chem. 471, 193 (1994).Google Scholar
  132. 132.
    I. R. Whittal, M. G. Humphrey, D. C. R. Hockless, B. W. Skelton, and A. H. White, Organometallics 14, 3970 (1995).Google Scholar
  133. 133.
    T. Richardson, C. G. Roberts, M. E. C. Polywka, and S. G. Davies, Thin Solid Films 179, 405 (1989).ADSGoogle Scholar
  134. 134.
    D. W. Bruce, A. Thornton, B. Chaudret, S. Sabo-Etienne, T. L. Axon, and G. H. Cross, Polyhedron 14, 1765 (1995).Google Scholar
  135. 135.
    M. Kimura, H. Abdel-Halim, D. W. Robinson, and D. O. Cowan, J. Organomet. Chem. 403, 365 (1991).Google Scholar
  136. 136.
    Z. Wu, R. Ortiz, A. Fort, M. Barzoukas, and S. R. Marder, J Organomet. Chem. (1997) 528, 217.Google Scholar
  137. 137.
    W. Tam, L.-T. Cheng, J. D. Bierlein, L. K. Cheng, Y. Wang, A. E. Feirling, G. R. Meredith, D. E Eaton, J. C. Calabrese, and G. L. J. A. Rikken, ACS Symp. Ser. 455, 158 (1991).Google Scholar
  138. 138.
    A. G. Anderson, J. C. Calabrese, W. Tamand, and I. D. Williams, Chem. Phys. Lett. 134, 392 (1987).ADSGoogle Scholar
  139. 139.
    D. E Eaton, A. G. Anderson, W. Tamand, and Y. Wang, J. Am. Chem. Soc. 109, 1886 (1987).Google Scholar
  140. 140.
    P. G. Lacroix, W. Lin, and G. K. Wong, Chem. Mater. 7, 1293 (1995).Google Scholar
  141. 141.
    S. Maiorana, A. Papagni, E. Licandro, A. Persoons, K. Clay, S. Houbrechts, and W. Porzio, Gazz. Chim. Ital. 125, 377 (1995).Google Scholar
  142. 142.
    S. Houbrechts, K. Clays, A. Persoons, V. Cadiemo, M. P. Gamasa, and J. Gimeno, J. Am. Chem. Soc. Organometallics, (1996) 15, 5266.Google Scholar
  143. 143.
    T. N. Briggs, C. J. Jones, J. A. McCleverty, B. D. Neaves, and H. M. Colquhoum, J. Chem. Soc., Dalton Trans. 1249 (1985).Google Scholar
  144. 144.
    J. A. McCleverty, Polyhedron 8 1669 (1989) and references cited therein.Google Scholar
  145. 145.
    B. J. Coe, C. J. Jones, J. A. McCleverty, D. Bloor, P. V. Kolinsky, and R. J. Jones, Polyhedron, 13, 2107 (1994); B. J. Coe, J. D. Foulon, T. A. Hamor, C. J. Jones, J. A. McCleverty, D. Bloor, G. H. Cross, and T. L. Axon, J. Chem. Soc., Dalton Trans. 3427 (1994); B. J. Coe, T. A. Hamor, C. J. Jones, J. A. McCleverty, D. Bloor, G. H. Cross, and T. L. Axon,.1 Chem. Soc., Dalton Trans. 673 (1996).Google Scholar
  146. 146.
    B. J. Coe, C. J. Jones, and J. A. McCleverty, Polyhedron 13, 2117 (1994).Google Scholar
  147. 147.
    S. A. O’Reilly, P. S. White, and J. L. Templeton, Chem. Mater. 8, 93 (1996).Google Scholar
  148. 148.
    J. Zyss, C. Dhenaut, T. Chauvan, and I. Ledoux, Chem. Phys. Lett. 206, 409 (1993).ADSGoogle Scholar
  149. 149.
    C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. Le Bozec, Nature 374, 339 (1995).ADSGoogle Scholar
  150. 150.
    W. Chiang, M. E. Thompson, D. VanEngen, and J. W. Perry, in Organic Materials for Nonlinear Optics II, Spec. Publ. No. 91, R. A. Hann and D. Bloor, eds., p. 210, Royal Soc. Chem., London (1991).Google Scholar
  151. 151.
    W. Chiang, D. M. Ho, D. Van Engen, and M. E. Thompson, lnorg. Chem. 32, 2886 (1993).Google Scholar
  152. 152.
    H. Sakaguchi, H. Nakamura, T. Nagamura, T. Ogawa, and T. Matsuo, Chem. Lett. 1715 (1989).Google Scholar
  153. 153.
    C. C. Teng and A. E Garito, Phys. Rev. B 28, 6766 (1983).ADSGoogle Scholar
  154. 154.
    M. Bourgault, C. Mountassir, H. Le Bozec, I. Ledoux, G. Pucetti, and J. Zyss, J. Chem. Soc., Chem. Commun. 1623 (1993).Google Scholar
  155. 155.
    D. Touchard, P. Haquette, N. Pirio, L. Toupet, and P. H. Dixneuf, Organometallics 12, 3132 (1993).Google Scholar
  156. 156.
    A. J. Hodge, S. L. Ingham, A. K. Kakkar, M. S. Khan, J. Lewis, N. J. Long, D. G. Parker, and P. R. Raithby, J. Organomet. Chem. 488, 205 (1995).Google Scholar
  157. 157.
    W. Tam and J. C. Calabrese, Chem. Phys. Lett. 144, 79 (1988).ADSGoogle Scholar
  158. 158.
    T. B. Marder, G. Lesley, Z. Yuan, H. B. Fyfe, P. Chow, G. Stringer, T. R. Jobe, N. J. Taylor, I. D. Williams, and S. K. Kurtz, ACS Symp. Ser. 455, 605 (1991).Google Scholar
  159. 159.
    H. B. Fyfe, M. Mlekuz, G. Stringer, N. J. Taylor, and T. B. Marder, in Inorganic and Organometallic Polymers with Special Properties, NATO ASI Series, Series E, Vol. 206, R. M. Laine, ed., p. 331, Kluwer Academic Publ., Dordrecht (1992).Google Scholar
  160. 160.
    S. J. Davies, B. E. G. Johnson, J. Lewis, and M. S. Khan, J. Organomet. Chem. 451, C43 (1991).Google Scholar
  161. 161.
    J. Burdeniuk and D. Milstein, J. Organomet. Chem. 451, 213 (1993).Google Scholar
  162. 162.
    D. W. Bruce and A. Thornton, Mol. Cryst. Lig. Cryst. 231, 253 (1993).Google Scholar
  163. 163.
    D. W. Bruce, L.-T. Cheng, G. H. Cross, M. Barzoukas, A. Fort, and A. Thornton, paper presented at the 5th International Conference on the Chemistry of the Platinum Group Metals, University of St. Andrews, U.K. (1993).Google Scholar
  164. 164.
    S. Di Bella, I. Fragala, I. Ledoux, M. A. Diaz-Garcia, P. G. Lacroix, and T. J. Marks, Chem. Mater. 6, 881 (1994).Google Scholar
  165. 165.
    S. Di Bella, I. Fragala, I. Ledoux, and T. J. Marks, J. Am. Chem. Soc. 117, 9481 (1995).Google Scholar
  166. 166.
    G. Mignani, M. Barzoukas, J. Zyss, G. Soula, F. Balegroune, D. Grandjean, and D. Josse, Organometallics 10, 3660 (1991).Google Scholar
  167. 167.
    G. Mignani, A. Kramer, G. Puccetti, I. Ledoux, G. Soula, J. Zyss, and R. Meyrueix, Organometallics 9, 2640 (1990).Google Scholar
  168. 168.
    R. J. P. Corriu, W. E. Douglas, Z. Yang, Y. Karakus, G. H. Cross, and D. Bloor, J. Organomet. Chem. 455, 69 (1993).Google Scholar
  169. 169.
    D. Hissink, P. E VanHutten, G. Hadziioannou, and E VanBolhuis, J. Organomet. Chem. 454, 25 (1993).Google Scholar
  170. 170.
    Z. Yuan, N. J. Taylor, T. B. Marder, I. D. Williams, S. K. Kurtz, and L.-T. Cheng, J Chem. Soc., Chem. Commun. 1489 (1990).Google Scholar
  171. 171.
    Z. Yuan, N. J. Taylor, T. B. Marder, I. D. Williams, S. K. Kurtz, and L.-T. Cheng, in Organic Materials for Nonlinear Optics II, Spec. Publ. No. 91, R. A. Hann and D. Bloor, eds., p. 190, Royal Soc. Chem., London (1991).Google Scholar
  172. 172.
    Z. Yuan, N. J. Taylor, Y. San, T. B. Marder, I. D. Williams, and L.-T. Cheng, J. Organomet. Chem. 449, 27 (1993).Google Scholar
  173. 173.
    C. Lambert, S. Stadler, G. Bourhill, and C. Brauchle, Angew. Chem. 108, 761 (1996); Angew. Chem., Int. Ed. Engl. 35, 644 (1996).Google Scholar
  174. 174.
    M. Leguan, R. M. Leguan, K. Chane-Ching, P. Bassoul, G. Bravic, Y. Barrans, and D. Chausseau, J Mater. Chem. 6, 5 (1996).Google Scholar
  175. 175.
    K. Chane-Ching, M. Lequan, R. M. Lequan, C. Runser, M. Barzoukas, and A. Fort, J Mater. Chem. 5, 649 (1995).Google Scholar
  176. 176.
    K. L. Kott, C. M. Whitaker, and R. J. McMahon, Chem. Mater. 7, 426 (1995).Google Scholar
  177. 177.
    M. Leguan, C. Branger, J. Simon, T. Thami, E. Chauchard, and A. Persoons, Adv. Mater. 6, 851 (1994).Google Scholar
  178. 178.
    M. H. Chisholm, D. M. Hoffman, and J. C. Huffman, Inorg. Chem. 22, 2903 (1983).Google Scholar
  179. 179.
    D. M. T. Chen, M. H. Chishom, K. Folting, J. C. Huffman, and N. S. Marchant, Inorg. Chem. 25, 4170 (1986).Google Scholar
  180. 180.
    T. P. Pollagi, T. C. Stoner, R. E Dallinger, T. M. Gilbert, and M. D. Hopkins, J. Am. Chem. Soc. 115, 703 (1991).Google Scholar
  181. 181.
    P. A. Cahill, Mater. Res. Soc. Proc. 109, 319 (1988).Google Scholar
  182. 182.
    H. Li, C. H. Huang, X. S. Zhao, X. H. Xie, L. G. Xu, and T. K. Li, Langmuir 10, 3794 (1994).Google Scholar
  183. 183.
    L. H. Gao, K. Z. Wang, C. H. Huang, X. S. Zhao, X. H. Xia, T., K. Li, and J. M. Xu, Chem. Mater. 7, 1047 (1995).Google Scholar
  184. 184.
    H. Li, C. H. Huang, Y. F. Zhou, X. S. Zhao, X. H. Xia, T. K. Li, and J. Bai, J. Mater. Chem. 5, 1871 (1995).Google Scholar
  185. 185.
    A. J. Heeger, J. Orenstein, and D. R. Ulrich, in Nonlinear Optical Properties of Polymers, Mater. Res. Soc. Symp. Proc., Vol. 109, Pittsburg (1987).Google Scholar
  186. 186.
    E N. Prasad, Thin Solid Films 152, 275 (1987).ADSGoogle Scholar
  187. 187.
    G. P. Agrawal, C. Cojan, and C. Flytzanis, Phys. Rev. B 17, 776 (1978).ADSGoogle Scholar
  188. 188.
    J. P. Hermann, D. Ricard, and J. Ducuing, J. Appl. Phys. Lett. 23, 178 (1973).ADSGoogle Scholar
  189. 189.
    C. Flytzanis, Mater. Res. Soc. Symp. Proc. 109, 167 (1987).Google Scholar
  190. 190.
    C. S. Winter, S. N. Oliver, and J. D. Rush, Opt. Commun. 69, 45 (1988).ADSGoogle Scholar
  191. 191.
    C. S. Winter, S. N. Oliver, and J. D. Rush, Spec. Publ. R. Soc. Chem. 69, 232 (1989).Google Scholar
  192. 192.
    C. S. Winter, S. N. Oliver, J. D. Rush, R. J. Manning, C. Hill, and A. Underhill, ACS Symp. Ser. 455, 616 (1991).Google Scholar
  193. 193.
    V Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, Opt. Lett. 14, 1140 (1989).ADSGoogle Scholar
  194. 194.
    D. N. Beratan, J. N. Onuchic, and J. W. Perry, J Phys. Chem. 91, 2696 (1987).Google Scholar
  195. 195.
    S. Ghoshal, M. Samoc, P. N. Prasad, and J. J. Tufariello, J Phys. Chem. 94, 2847 (1990).Google Scholar
  196. 196.
    Z. Yuan, G. Stringer, I. R. Jobe, D. Kreller, K. Scott, L. Koch, N. J. Taylor, and T. B. Marder, J Organomet. Chem. 452, 115 (1993).Google Scholar
  197. 197.
    C. W Spangler, K. O. Havelka, M. W. Becker, T. A. Kelleher, and L.-T. Cheng, Proc. SPIE Int. Soc. Opt. Eng. 1569, 129 (1991).Google Scholar
  198. 198.
    S. Burbridge, A. P. Davey, J. Callaghan, W. Blau, M. C. B. Colbert, D. J. Hodgson, N. J. Long, P. R. Raithby, and J. Lewis, (unpublished material).Google Scholar
  199. 199.
    M. C. B. Colbert, D. J. Hodgson, J. Lewis, P. R. Raithby, and N. J. Long, Polyhedron 14, 2759 (1995).Google Scholar
  200. 200.
    S. L. Ingham, M. S. Khan, J. Lewis, N. J. Long, and P. R. Raithby, J. Organomet. Chem. 470, 153 (1994).Google Scholar
  201. 201.
    L. K. Myers, D. M. Ho, M. E. Thompson, and C. Langhoff, Polyhedron 14, 57 (1995); L. K. Myers, C. Langhoff, and M. E. Thompson, J. Am. Chem Soc. 114, 7560 (1992).Google Scholar
  202. 202.
    I. R. Whittal, M. G. Humphrey, M. Samoc, J. Swiatkiewicz, and B. Luther-Davies, Organometallics 14, 5493 (1995).Google Scholar
  203. 203.
    S. Takahashi, M. Kariya, T. Yatake, K. Sonogashira, and N. Hagihara, Macromolecules 11, 1063 (1978).ADSGoogle Scholar
  204. 204.
    K. Sonogashira, K. Ohgâ, S. Takahashi, and N. Hagihara, J. Organomet. Chem. 188, 237 (1980).Google Scholar
  205. 205.
    S. Takahashi, Y. Takai, H. Morimoto, K. Sonogashira, and N. Hagihara, Mol. Cryst. Liq. Cryst. 32, 139 (1982).Google Scholar
  206. 206.
    C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, and C. H. Lee, Polymer 28, 553 (1987).Google Scholar
  207. 207.
    J. Guha, C. C. Frazier, P. L. Parker, K. Kang, and S. E. Finberg, Optics Lett. 14, 952 (1989).ADSGoogle Scholar
  208. 208.
    W. J. Blau, H. J. Byrne, D. J. Cardin, and A. P. Davey, J. Mater. Chem. 1, 245 (1991).Google Scholar
  209. 209.
    Z. Atherton, C. W. Faulkner, S. L. Ingham, A. K. Kakkar, M. S. Khan, J. Lewis, N. J. Long, and P. R. Raithby, J. Organomet. Chem. 462, 265 (1993); C. W. Faulkner, S. L. Ingham, M. S. Khan, J. Lewis, N. J. Long, and P. R. Raithby, J. Organomet. Chem. 482, 139 (1994); M. S. Khan, S. J. Davies, A. K. Kakkar, D. Schwartz, B. Lin, B. E G. Johnson, and J. Lewis, J. Organomet. Chem. 424, 87 (1992); S. J. Davies, B. E G. Johnson, J. Lewis, and P. R. Raithby, J. Organomet. Chem. 414, C51 (1991); B. E G. Johnson, A. K. Kakkar, M. S. Khan, J. Lewis, A. E. Dray, R. H. Friend, and E Wittmann, J. Mater. Chem. 1, 485 (1991).Google Scholar
  210. 210.
    Y. Sun, N. J. Taylor, and A. J. Carty, Organometallics 11, 4293 (1992); J. Organomet. Chem. 423, C43 (1992).Google Scholar
  211. 211.
    H. B. Fyfe, M. Mlekuz, D. Zargarian, N. J. Taylor, and T. B. Marder, J. Chem. Soc., Chem. Commun. 188 (1991).Google Scholar
  212. 212.
    H. B. Fyfe, M. Mlekuz, D. Zargarian, and T. B. Marder, Organometallics 10, 204 (1991).Google Scholar
  213. 213.
    N. M. Agh-Atabay, W. E. Lindsell, P. N. Preston, P. J. Tomb, A. D. Lloyd, P. Rangel-Rojo, G. Spruce, and B. S. Wherret, J. Mater. Chem. 2, 1241 (1992).Google Scholar
  214. 214.
    D. Tzalis and Y. Tor, Tetrahedron Lett. 36, 6017 (1995).Google Scholar
  215. 215.
    K. A. Bunten and A. K. Kakkar, J. Mater. Chem. 5, 2041 (1995).Google Scholar
  216. 216.
    R. D. Miller and J. Michl, Chem. Rev. 89, 1359 (1989).Google Scholar
  217. 217.
    E Kajzar, J. Messier, and C. Rosilio, J. Appl. Phys. 60, 3040 (1986).Google Scholar
  218. 218.
    L. Yang, Q. Z. Wang, P. P. Ho, R. Dorsonville, R. R. Alfano, W. K. Zou, and N. L. Yang, Appl. Phys. Lett. 53, 1245 (1988).ADSGoogle Scholar
  219. 219.
    J.-C. Baumert, G. C. Bjorklund, D. H. Jundt, M. C. Jurich, H. Looser, R. D. Miller, J. Rabolt, R. Sooriyakumaran, J. D. Swalen, and R. J. Twieg, Appl. Phys. Lett. 53, 1147 (1988).ADSGoogle Scholar
  220. 220.
    D. J. McGraw, A. E. Siegman, G. M. Wallraff, and R. D. Miller, Appl. Phys. Lett. 54, 1713 (1989).ADSGoogle Scholar
  221. 221.
    R. D. Miller, E M. Schellenberg, J.-C. Baumert, H. Looser, P. Shukla, W. Torruellas, G. Bjorklund, S. Kano, and Y. Takahashi, ACS Symp. Ser. 455, 636 (1991).Google Scholar
  222. 222.
    Z. Yuan, N. J. Taylor, R. Ramachandran, and T. B. Marder, Appl. Organomet. Chem. 10, 305 (1996).Google Scholar
  223. 223.
    J. A. McCleverty, Prog. Inorg. Chem. 10, 49 (1968).Google Scholar
  224. 224.
    S. N. Oliver. C. S. Winter, J. D. Rush, A. E. Underhill, and C. Hill, Proc. SPIE Int. Soc. Opt. Eng. 1337, 81 (1990).ADSGoogle Scholar
  225. 225.
    J. R. Lindle, C. S. Weisbecker, F. J. Bartoli, J. S. Shirk, T. H. Yoon, O. K. Kim, and Z. H. Kafafi, Proc. Conf. on Lasers and Electro-Optics (1991).Google Scholar
  226. 226.
    C. A. S. Hill, A. Charlton, A. E. Underhill, K. M. A. Malik, M. B. Hursthouse, A. I. Karaulov, S. N. Oliver, and S. V. Kershaw, J Chem. Soc., Dalton Trans. 587 (1995).Google Scholar
  227. 227.
    A. S. Dhindsa, A. E. Underhill, S. N. Oliver, and S. V. Kershaw, J Mater. Chem. 5, 261 (1995).Google Scholar
  228. 228.
    Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, J. Appl. Phys. 62, 716 (1987).ADSGoogle Scholar
  229. 229.
    M. K. Casstevens, M. Samoc, J. Pfleger, and P. N. Prasad, J. Chem. Phys. 92, 2019 (1990).ADSGoogle Scholar
  230. 230.
    T. Wada, S. Yamada, Y. Matsuoka, C. H. Grossman, K. Shigehara, H. Sasube, A. Yamada, and A. E Garito, Proc. SPIE Int. Soc. Opt. Eng. 1337, 292 (1990).Google Scholar
  231. 231.
    J. S. Shirk, J. R. Lindle, E J. Bartoli, C. A. Hoffman, Z. H. Kafafi, and A. W. Snow, Appl. Phys. Lett. 55, 1287 (1989).ADSGoogle Scholar
  232. 232.
    J. S. Shirk, J. R. Lindle, E J. Bartoli, Z. H. Kafafi, and A. W. Snow, ASC Symp. Ser. 455, 626 (1991).Google Scholar
  233. 233.
    H. Matsuda, S. Okada, A. Mataki, H. Nakanishi, Y. Suda, K. Sluigehera, and A. Yamada, Proc. SPIE1nt. Soc. Opt. Eng. 1337, 105 (1990).ADSGoogle Scholar
  234. 234.
    D. V. G. L. N. Rao, E J. Aranda, J. E Roach, and D. E. Remy, Appl. Phys. Lett. 58, 1241 (1991).ADSGoogle Scholar
  235. 235.
    J. W. Perry, L. R. Khundkar, D. R. Coulter, D. Alvarez, S. R. Marder, T. H. Pei, M. J. Sence, E. W. VanStryland, and D. J. Hagan, in Organic. Molecules for Nonlinear Optics and Photonics, NATO ASI Series, Series E, Vol. 194, J. Messier, F. Kajzar, and P. N. Prasad, eds., p. 369, Kluwer Academic Publ., Boston (1991).Google Scholar
  236. 236.
    H. L. Anderson, S. J. Martin, and D. D. C. Bradley, Angew. Chem. 106, 711 (1994): Angew. Chem., Int. Ed. Engl. 33, 655 (1994).Google Scholar
  237. 237.
    M. S. Khan, A. K. Kakkar, N. J. Long, J. Lewis, P. Raithby, P. Nguyan, T. B. Marder, F. Wittman, and R. H. Friend, J. Mater. Chem. 4, 1227 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Nicholas J. Long
    • 1
  1. 1.Department of Chemistry, Imperial College of ScienceTechnology and MedicineSouth Kensington, LondonUK

Personalised recommendations