Advertisement

Electroluminescence in Molecular Materials

  • Scott Sibley
  • Mark E. Thompson
  • Paul E. Burrows
  • Stephen R. Forrest
Chapter
Part of the Modern Inorganic Chemistry book series (MICE)

Abstract

The cathode ray tube (CRT) is currently the most widely used electronic display technology. The luminescent images of the CRT are generated by independently exciting the red, green, and blue (RGB) phosphors of each pixel, whose emissions add to give the desired color. While CRTs have excellent picture quality, their size, weight, and low shock resistance prevent them from being used in most mobile applications such as laptop computers and other small consumer electronic devices. The technology that has been applied almost universally in mobile applications involves the use of liquid crystal displays (LCDs). The individual pixels in these displays consist of a liquid crystalline material sandwiched between two electrodes, which in turn is sandwiched between crossed polarizers. The individual pixels of the LCD act as electrically activated light valves, allowing light to be transmitted from a light source behind the LCDpanel. The light source can be a fluorescent back light or a mirror that reflects the incident light. Color images are generated by placing magenta, yellow, and cyan color-pass filters in front of selected pixels, and driving the individual color elements of each pixel to generate the desired spectrum.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Molecular Material Organic Thin Film Hole Transport Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Dresner, RCA Rev, 30, 322 (1969); W Helfrich and W. G. Schneidere, Phys. Rev. Lett., 14, 229 (1965)CrossRefGoogle Scholar
  2. J. Dresner, J Chem Phys., 14, 2902 (1965)Google Scholar
  3. D. F. Williams and M. Schadt, Proc. IEEE, 58, 476 (1970).CrossRefGoogle Scholar
  4. 2.
    C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).ADSCrossRefGoogle Scholar
  5. 3.
    C. W. Tang, S. A. VanSlyke, and C. A. Chen, J Appl. Phys., 65, 3610 (1989).ADSCrossRefGoogle Scholar
  6. 4.
    C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett., 67, 3853 (1995).ADSCrossRefGoogle Scholar
  7. 5.
    J. Kido and K. Nagai, JALCOM, 192, 30 (1993)Google Scholar
  8. M. Takeuchi, H. Masui, I. Kikuma, M. Masui, T. Muranoi, and T. Wada, Jpn. J. Appl. Phys., 31, 498 (1992)ADSCrossRefGoogle Scholar
  9. C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett., 56, 799 (1990)ADSCrossRefGoogle Scholar
  10. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett., 67, 3853 (1995).ADSCrossRefGoogle Scholar
  11. 6.
    Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, and K. Shibata, Jpn. J. Appl. Phys., 32, 514 (1993).ADSCrossRefGoogle Scholar
  12. 7.
    P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys., 79, 7991 (1996).ADSCrossRefGoogle Scholar
  13. 8.
    Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, and K. Shibata, Chem. Lett., 905 (1993).Google Scholar
  14. 9.
    S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996).ADSCrossRefGoogle Scholar
  15. 10.
    G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett., 22, 175 (1997).ADSCrossRefGoogle Scholar
  16. 11.
    G. Gustaffason, G. M. Treacy, Y. Cao, F. Klavertter, N. Colaneri, and A. J. Heeger, Synth. Met., 57, 4123 (1993).CrossRefGoogle Scholar
  17. 12.
    V. Bulovic, G. Gu, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Nature, 380, 29 (1996)ADSCrossRefGoogle Scholar
  18. V. Bulovic, G. Gu, P. E. Burrows, S. R. Forrest, and M. E. Thompson, App. Phys. Lett., 68, 2606 (1996).ADSCrossRefGoogle Scholar
  19. 13.
    N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings Publishing, Menlo Park, Ca. (1978)Google Scholar
  20. J. Guillet, Polymer Photophysics and Photochemistry, Cambridge University Press (1985).Google Scholar
  21. 14.
    S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, and T. Wakimoto Proc. SPIE, 1910, 212 (1993)ADSCrossRefGoogle Scholar
  22. P. E. Burrows and S. R. Forrest, Appl. Phys. Lett., 64, 2285 (1993).ADSCrossRefGoogle Scholar
  23. 15.
    P. E. Burrows, S. R. Forrest, M. E. Thompson, and S. P. Sibley, Appl. Phys. Lett., 69, 2959 (1996).ADSCrossRefGoogle Scholar
  24. 16.
    J. Kido, M. Kimura, and K. Kagai, Science, 267, 1332 (1995).ADSCrossRefGoogle Scholar
  25. 17.
    M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals, Clarendon Press, Oxford (1982).Google Scholar
  26. 18.
    C. Wu, J. Sturm, R. A. Register, J. Tian, E. Dana, and M. E. Thompson, IEEE Trans. Electron Devices, 44, 1269 (1997).ADSCrossRefGoogle Scholar
  27. 19.
    J. Tian, C. C. Wu, M. E. Thompson, J. C. Sturm, R. A. Register, M. J. Marsella, and T. M. Swager, Adv. Mater., 7, 395 (1995)CrossRefGoogle Scholar
  28. J. Tian, C. C. Wu, M. E. Thompson, J. C. Sturm, and R. A. Register, Chem. Mater., 7, 2190 (1995).CrossRefGoogle Scholar
  29. 20.
    J. Pommerehne, H. Vestweber, W. Guss, R. E Mahrt, H. Bassler, and M. D. Porsch, Adv. Mater., 7, 551 (1995)CrossRefGoogle Scholar
  30. C. Zhang, H. von Seggem, K. Pakbaz, B. Kraabel, H.-W. Schmidt, and A. J. Heeger, Synth. Met., 62, 35 (1994)CrossRefGoogle Scholar
  31. C. Zhang, H. von Seggem, B. Kraabel, H.-W. Schmidt, and A. J. Heeger, Synth. Met., 72, 185 (1995)CrossRefGoogle Scholar
  32. G. E. Johnson, K. M. McGrane, and M. Stolka, Pure Appl. Chem., 67, 175 (1995)CrossRefGoogle Scholar
  33. J. Kido, M. Kohda, K. Okuyama, and K. Nagai, Appl. Phys. Lett., 61, 761 (1992)ADSCrossRefGoogle Scholar
  34. J. Kido, H. Shionoya, and K. Magai, Appl. Phys. Lett., 67, 2281 (1995).ADSCrossRefGoogle Scholar
  35. 21.
    Z. Shen, V. Burrows, D. Z. Garguzov, M. McCarty, M. E. Thompson, and S. R. Forrest, J. Appl. Phys., 35, L401 (1996).ADSGoogle Scholar
  36. 22.
    W. P. Anderson, W. D. Edwards, and M. C. Zemer, Inorg. Chem., 25, 2728 (1986).CrossRefGoogle Scholar
  37. 23.
    W. P. Anderson, T. R. Cundari, R. S. Drago, and M. C. Zerner, Inorg. Chem., 29, I (1990).Google Scholar
  38. 24.
    S. A. Van Slyke, P. S. Brynn, and F. V. Levecchio, U.S. Patent No. 5,150, 006 (1992).Google Scholar
  39. 25.
    T. A. Hopkins, K. Meerholz, S. Shaheen, M. L. Anderson, A. Schmidt, B. Kippelen, A. B. Padias, H. K. Jr., H.ll, N. Peyghambarian, and N. R. Armstrong, Chem. Mater., 8, 344 (1996).Google Scholar
  40. 26.
    H. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett., 60, 1220 (1992).ADSCrossRefGoogle Scholar
  41. 27.
    M. A. Abkowitz, Phil. Mag. B, 65, 817 (1992).CrossRefGoogle Scholar
  42. 28.
    L. B. Schein, Phil. Mag. B, 65, 795 (1992).CrossRefGoogle Scholar
  43. 29.
    V. M. Kenkre and D. H. Dunlap, Phil. Mag. B, 65, 831 (1992).CrossRefGoogle Scholar
  44. 30.
    E. Aminaka, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys., 33, 1061 (1994).ADSCrossRefGoogle Scholar
  45. 31.
    S. Egusa, A. Miura, N. Gemma, and M. Azuma, Jpn. J. Appl. Phys., 33, 2741 (1994).ADSCrossRefGoogle Scholar
  46. 32.
    A. Rose, Phys. Rev, 97, 1538 (1955).ADSCrossRefGoogle Scholar
  47. 33.
    M. A. Lampert and P. Mark, Current Injection in Solids, Academic Press, New York (1970).Google Scholar
  48. 34.
    M. A. Lampert, Phys. Rev, 103, 1648 (1956).ADSCrossRefGoogle Scholar
  49. 35.
    E Mark and W. J. Helfrich, J. Appl. Phys., 33, 205 (1962).ADSCrossRefGoogle Scholar
  50. 36.
    R. W. Smith, RCA Rev., 20, 69 (1959).Google Scholar
  51. 37.
    H. P. D. Lanyon, Phys. Rev., 130, 134 (1963).ADSCrossRefGoogle Scholar
  52. 38.
    A. Sussman, J. Appl. Phys., 38 2738 (1967).ADSCrossRefGoogle Scholar
  53. 39.
    A. Sussman, J. Appl. Phys., 38, 2748 (1967).ADSCrossRefGoogle Scholar
  54. 40.
    B. B. Ismail and R. D. Gould, Phys. Status Solidi A, 115, 237 (1989).ADSCrossRefGoogle Scholar
  55. 41.
    A. Battacharjee and B. Mallik, Indian J. Phys., 66A, 369 (1992).Google Scholar
  56. 42.
    P. Canet, C. Laurent, J. Akkinnifesi, and B. Despax, J. Appl. Phys., 72, 2423 (1992).CrossRefGoogle Scholar
  57. 43.
    A. Ahmad and R. A. Collins, Thin Solid Films, 217, 75 (1992).ADSCrossRefGoogle Scholar
  58. 44.
    A. K. Hassan and R. D. Gould, J. Phys. D: Appl. Phys., 22, 1162 (1989).ADSCrossRefGoogle Scholar
  59. 45.
    A. K. Hassan and R. D. Gould, Int. J. Electron., 73, 1047 (1992).CrossRefGoogle Scholar
  60. 46.
    S. Gravano, A. K. Hassan, and R. D. Gould, Int. J. Electron., 70, 477 (1991).CrossRefGoogle Scholar
  61. 47.
    H. Antoniadis, M. A. Abkovitz, B. R. Hsieh, S. A. Jenekhe, and M. Stolka, Mat. Res. Soc. Symp. Proc., 328, 377 (1994).CrossRefGoogle Scholar
  62. 48.
    H. Antoniadis, M. A. Abkovitz, and B. R. Hsieh, App. Phys. Lett., 65, 2030 (1994).ADSCrossRefGoogle Scholar
  63. 49.
    R. N. Marks, D. D. C. Bradley, R. W. Jackson, P. L. Burn, and A. B. Holmes, Synth. Met., 55, 4128 (1993).CrossRefGoogle Scholar
  64. 50.
    C. C. Wu, J. K. M. Chun, P. E. Burrows, J. C. Sturm, M. E. Thompson, S. R. Forrest, and R. A. Register, Appl. Phys. Lett., 66, 653 (1995).ADSCrossRefGoogle Scholar
  65. 51.
    E E. Burrows, L. S. Sapochak, D. M. McCarty, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett., 64, 2718 (1994).ADSCrossRefGoogle Scholar
  66. 52.
    V. Bulovic, G. Gu, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Nature, 380, 29 (1996); V. Bulovic, G. Gu, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett., 68, 2606 (1996).Google Scholar
  67. 53.
    E E. Burrows, S. R. Forrest, S. P. S.bley. and M. E. Thompson, Appl. Phys. Lett., 69, 2959 (1996).Google Scholar
  68. 54.
    C. W. Tang and J. E. Littman, U.S. Patent No. 5,294,869 (1994) H. Nakamura, C. Hosokawa, and T. Kusumoto, in Inorganic and Organic Electroluminescence/EL 96 Berlin, R. H. Mauch and H.-E. Gumlich, eds., pp. 95–100, Wissenschaft und Technik Verlag, Berlin (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Scott Sibley
    • 1
  • Mark E. Thompson
    • 1
  • Paul E. Burrows
    • 2
  • Stephen R. Forrest
    • 2
  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Center for Photonic and Optoelectronic Materials, Department of Electrical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations