Skip to main content

Structure-Property Relationships in Transition Metal-Organic Third-Order Nonlinear Optical Materials

  • Chapter
  • 231 Accesses

Part of the book series: Modern Inorganic Chemistry ((MICE))

Abstract

Materials exhibiting third-order nonlinear optical (NLO) properties have applications in a number of important technologies including power limiting for sensor protection and optically addressed optical switches for photonics switching, all optical signal processing and optical computing.1–5 Because of the potential importance of these technologies, there is currently intense research interest in developing new third-order NLO materials with large effective third-order NLO susceptibilities, χ(3), and the appropriate properties for the various applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symposium Series, Vol. 233, American Chemical Society, Washington (1983).

    Google Scholar 

  2. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2, Academic Press, New York (1987).

    Google Scholar 

  3. S. B. Marder, J. E. Sohn, and G. S. Stuckey, eds., Materials for Nonlinear Optics, Chemical Perspectives, ACS Symposium Series, Vol. 455, American Chemical Society, Washington (1991).

    Google Scholar 

  4. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York (1991).

    Google Scholar 

  5. J. Messier, F. Kajar, and P. N. Prasad, eds., Organic Molecules for Nonlinear Optics and Photonics, Kluwer Scientific Publishers, Dordrecht (1991).

    Google Scholar 

  6. N. J. Long, Angew Chem., Int. Ed. Engl., 34, 21 (1995).

    Article  Google Scholar 

  7. J. S. Shirk, J. R. Lindle, E J. Bartoli, C. A. Hoffman, Z. H. Kafafi, and A. W. Snow, Appl. Phys. Lett., 55, 1287 (1989).

    Article  ADS  Google Scholar 

  8. J. S. Shirk, J. R. Lindle, E J. Bartoli, Z. H. Kafafi, and A. W. Snow, ACS Symposium Series, 455, 626 (1991).

    Article  Google Scholar 

  9. J. S. Shirk, J. R. Lindle, E J. Bartoli, and M. E. Boyle, J. Phys. Chem., 96, 5847 (1992).

    Article  Google Scholar 

  10. J. S. Shirk, J. R. Lindle, E J. Bartoli, Z. H. Kafafi, A. W. Snow, and M. E. Boyle, Int. J. Nonlinear Opt. Phys., 1, 699 (1992).

    Article  Google Scholar 

  11. E J. Bartoli, J. R. Lindle, J. S. Shirk, S. R. Flom, A. W. Snow, and M. E. Boyle, Nonlinear Opt., 10, 161 (1995).

    Google Scholar 

  12. M. A. Diaz-Garcia, I. Ledoux, J. A. Duro, T. Torres, E Aguillô-Lopez, and J. Zyss, J. Phys. Chem., 98, 8761 (1994).

    Article  Google Scholar 

  13. T. Sakaguchi, Y. Shimizu, M. Miya, T. Fukumi, K. Ohta, and A. Nagata, Chem. Lett., 281 (1992).

    Google Scholar 

  14. Q. Gong, Y. Wang, S.-C. Yang, Z. Xia, Y. H. Zou, W. Sun, S. Dong, and D. Wang, J. Phys. D: Appl. Phys., 27, 911 (1994).

    Article  ADS  Google Scholar 

  15. M. A. Diaz-Garcia, I. Ledoux, E Fernâdez-Lâzaro, A. Sastre, T. Torres, E Aguillô-Lopez, and J. Zyss, J. Phys. Chem., 98, 4495 (1994).

    Article  Google Scholar 

  16. E Fernâdez-Lâzaro, A. Sastre, and T. Torres,.1 Chem. Soc., Chem. Commun., 419 (1995).

    Google Scholar 

  17. M. A. Díaz-García, I. Ledoux, E Fernádez-Lázaro, A. Sastre, T. Torres, E Aguilló-López, and J. Zyss, Nonlinear Opt., 10, 101 (1995).

    Google Scholar 

  18. H. Matsuda, S. Okada, A. Masaki, H. Nakamishi, Y. Suda, K. Shigehara, and A. Yamada, SPIE Proc., 1337, 105 (1990).

    Article  ADS  Google Scholar 

  19. M. Hosoda, T. Wada, A. Yamada, A. E Garito, and H. Sasabe, Mat. Res. Soc. Proc., 175, 89 (1990).

    Article  Google Scholar 

  20. T. Maruno, A. Yamashita, T. Hayashi, Y. Y. Maruo, H. Kanbara, and K. Kubodera, Proc. 1st Conf. Intelligent Mat., 194 (1992).

    Google Scholar 

  21. T. Wada, M. Hosoda, and H. Sasabe, Adv. Chem., 240, 303 (1994).

    Article  Google Scholar 

  22. S. N. Oliver, C. S. Winter, J. D. Rush, A. E. Underhill, and C. Hill, SPIE Proc., 1337, 81 (1990).

    Article  ADS  Google Scholar 

  23. C. A. S. Hill, A. E. Underhill, C. S. Winter, S. N. Oliver, and J. D. Rush, Spec. Pub1.-R. Soc. Chem. (Org. Mat. Nonlinear Opt. 2), 91, 217 (1991).

    Google Scholar 

  24. C. S. Winter, S. N. Oliver, J. D. Rush, C. A. S. Hill, and A. E. Underhill, in Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed., p. 383, Kluwer Academic Publishers, Dordrecht (1991).

    Chapter  Google Scholar 

  25. C. A. S. Hill, A. E. Underhill, A. Charlton, C. S. Winter, S. N. Oliver, and J. D. Rush, SPIE Proc., 1775, 43 (1992).

    Article  ADS  Google Scholar 

  26. S. N. Oliver, C. S. Winter, R. J. Manning, J. D. Rush, C. Hill, and A. E. Underhill, SPIE Proc., 1775, 110 (1992).

    Article  ADS  Google Scholar 

  27. S. N. Oliver and C. S. Winter, Adv. Mater., 4, 119 (1992).

    Article  Google Scholar 

  28. S. V. Kershaw, S. N. Oliver, R. J. Manning, J. D. Rush, C. A. S. Hill, A. E. Underhill, and A. S. Charlton, SPIE Proc., 2025, 388 (1993).

    Article  ADS  Google Scholar 

  29. G. J. Gall, T. A. King, S. N. Oliver, S. A. Capozzi, A. B. Sneddon, C. A. S. Hill, and A. E. Underhill, SPIE Proc., 2288, 372 (1994).

    Article  ADS  Google Scholar 

  30. A. E. Underhill, C. A. S. Hill, A. Charlton, S. Oliver, and S. Kershaw, Synth. Met., 71, 1703 (1995).

    Article  Google Scholar 

  31. S. N. Oliver, S. V. Kershaw, A. E. Underhill, C. A. S. Hill, and A. Charlton, Nonlinear Opt., 10, 87 (1995).

    Google Scholar 

  32. C. A. S. Hill, A. Charlton, A. E. Underhill, K. M. A. Malik, M. B. Hursthouse, A. I. Karaulov, S. N. Oliver, and S. V. Kershaw, J. Chem. Soc., Dalton Trans., 587 (1995).

    Google Scholar 

  33. M. A. Diaz-Garcia, E Aguillô-Lôez, M. G. Hutchings, P. E Gordon, and F. Kajzar, SPIE Proc., 2285, 227 (1994).

    Article  ADS  Google Scholar 

  34. T. Bjornholm, T. Geisler, J. C. Petersen, D. R. Greve, and N. C. Schiodt, Nonlinear Opt., 10, 129 (1995).

    Google Scholar 

  35. Z. H. Kafafi, J. R. Lindle, C. S. Weisbecker, E J. Bartoli, J. S. Shirk, T. H. Yoon, and 0.-J. Kim, Chem. Phys. Lett., 179, 79 (1991).

    Google Scholar 

  36. Z. H. Kafafi, J. R. Lindle, S. R. Flom, R. G. S. Pong, C. S. Weisbecker, R. C. Claussen, and E J. Bartoli, SPIE Proc., 1626, 440 (1992).

    Article  ADS  Google Scholar 

  37. A. S. Dhindsa, A. E. Underhill, S. Oliver, and S. Kershaw, J. Mater. Chem., 5, 261 (1995).

    Article  Google Scholar 

  38. A. S. Dhindsa, A. E. Underhill, S. Oliver, and S. Kershaw, Nonlinear Opt., 10, 115 (1995).

    Google Scholar 

  39. A. S. Dhindsa, A. E. Underhill, S. Oliver, and S. Kershaw, SPIE Proc., 2531, 350 (1995).

    Article  ADS  Google Scholar 

  40. T. Kamada, T. Fukaya, M. Mizuno, H. Masuda, and E Mizukami, Chem. Phys. Lett., 21, 194 (1994).

    Article  ADS  Google Scholar 

  41. T. Kamada, T. Fukaya, H. Masuda, and E Mizukami, Appl. Phys. Lett., 65, 1343 (1994).

    Article  ADS  Google Scholar 

  42. T. Kamada, T. Fukaya, T. Kodzasa, H. Masuda, and E Mizukami, Synth. Met., 71, 1725 (1995).

    Article  Google Scholar 

  43. T. Kamada, T. Fukaya, T. Kodzasa, H. Masuda, and F. Mizukami, Mol. Cryst. Liq. Cryst., 267, 117 (1995).

    Article  Google Scholar 

  44. T. Kamada, T. Fukaya, H. Masuda, F. Mizukami, M. Tachiya, R. Ishikawa, and T. Uchida, J. Phys. Chem., 99, 13239 (1995).

    Article  Google Scholar 

  45. S. Ghosal, M. Samoc, P. N. Prasad, and J. J. Tufariello, J. Phys. Chem., 94, 2847 (1990).

    Article  Google Scholar 

  46. M. E. Thompson, W. Chiang, L. K. Meyers, and C. Langhoff, SPIE Proc., 1497, 423 (1991).

    Article  ADS  Google Scholar 

  47. Z. Yuan, G. Stringer, I. R. Jobe, D. Kreller, K. Scott, L. Koch, N. J. Taylor, and T. B. Marder, J. Organomet. Chem., 452, 115 (1993).

    Article  Google Scholar 

  48. T. Kamata, T. Fukaya, T. Kodzasa, H Matsuda, E Mizukami, M. Tachiya, R. Ishikawa, T. Uchida, and Y. Yamazaki, Nonlinear Opt., 13, 31 (1995).

    Google Scholar 

  49. J. K. Meyers, C. Langhoff, and M. E. Thompson, J. Am. Chem. Soc., 114, 7560 (1992).

    Article  Google Scholar 

  50. L. K. Meyers, D. M. Ho, M. E. Thompson, and C. Langhoff, Polyhedron, 14, 57 (1995).

    Article  Google Scholar 

  51. C. C. Frazier, S. Guha, W. P. Chen, M. P. Cockerham, P. L. Porter, E. A. Chauchard, and C. H. Lee, Polymer, 28, 553 (1987).

    Article  Google Scholar 

  52. C. C. Frazier, E. A. Chauchard, M. E Cockerham, and P L. Porter, Mat. Res. Soc., Symp. Proc., 109, 323 (1988).

    Article  Google Scholar 

  53. W. J. Blau, H. J. Byrne, D. J. Cardin, and A. P. Davey. J. Mat. Chem., 1, 245 (1991).

    Article  Google Scholar 

  54. A. P. Davey, D. J. Cardin, H. J. Byrne, and W. Blau, W. in Organic Molecules for Nonlinear Optics and Photonics, J. Messier et al., eds., p. 391, Kluwer Academic Publishers, Dordrecht (1991).

    Google Scholar 

  55. H. J. Byrne and W. Blau, SPIE Proc., 2362, 34 (1995).

    Article  ADS  Google Scholar 

  56. N. M. Agh-Atabay, W. E. Lindsell, P. N. Preston, P J. Tomb, A. D. Lloyd, R. Rangel-Rojo, G. Spruce, and B. S. Wherrett, J. Mat. Chem., 2, 1241 (1992).

    Google Scholar 

  57. A. P. Davey, H. J. Byrne, H. Page, W. Blau, and D. J. Cardin, Synth. Metals, 58, 161 (1993).

    Article  Google Scholar 

  58. I. W. Tuft and S. W. McCahon, Opt. Lett., 15, 700 (1990).

    Article  ADS  Google Scholar 

  59. S. Shi, H. W. Hou, and X. Q. Zin, J Phys. Chem., 99, 4050 (1995).

    Article  Google Scholar 

  60. G. Sakane, T. Shibahare, H. W. Hou, X. Q. Zin, and S. Shi, Inorg. Chem., 34, 4785 (1995).

    Article  Google Scholar 

  61. W. Ji, S. Shi, H. J. Du, P. Ge, S. H. Tang, and X. Q. Xin, J. Phys. Chem., 99, 17297 (1995).

    Article  Google Scholar 

  62. T. Zhai, C. M. Lawson, G. Burgess, D. C. Gale, and G. M. Gray, Opt. Lett., 19, 831 (1994).

    Article  ADS  Google Scholar 

  63. T. Zhai. C. M. Lawson, D. C. Gale, and G. M. Gray, Opt. Mat., 4, 455 (1995).

    Google Scholar 

  64. C. M. Lawson, T. Zhai, D. C. Gale, and G. M. Gray, Mat. Res. Soc., Symp. Proc., 374, 287 (1995).

    Article  Google Scholar 

  65. D. C. Gale, G. E. Burgess, T. Zhai, and M. L. Lewis, Rev. Sci. Instrum., 64, 3072 (1993).

    Article  ADS  Google Scholar 

  66. T. T. Basiev, S. B. Mirov, and V. V. Osiko, IEEE J Quantum Electron., QE-24, 1052 (1988).

    Google Scholar 

  67. Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York (1984).

    Google Scholar 

  68. M. Sheik-bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J Quantum Electron., QE-26, 760 (1990).

    Google Scholar 

  69. J. Hein, H. Bergner, M. Lenzner, and S. Rentsch, Chem. Phys., 179, 543 (1994).

    Article  ADS  Google Scholar 

  70. R. G. Caro and M. C. Gower, IEEE J. Quantum Electron., QE-18, 1376 (1982).

    Google Scholar 

  71. G. L. Wood, M. J. Miller, and A. G. Mott, Opt. Lett., 20, 973 (1995).

    Article  ADS  Google Scholar 

  72. D. C. Rodenberg, J. R. Heflin, and A. E Garito, Nature, 359, 309 (1992).

    Article  ADS  Google Scholar 

  73. W. K. Zou and N. L. Yang, Opt. Lett., 16, 958 (1991).

    Article  Google Scholar 

  74. E. W. Van Stryland, M. Sheik-bahae, A. A. Said, and D. J. Hagan, SPIE Proc., 1852, 135 (1993).

    Google Scholar 

  75. M. D. Fayer, Ann. Rev. Phys. Chem., 33, 63 (1982).

    Article  ADS  Google Scholar 

  76. G. E. Burgess, M.S. Thesis, The University of Alabama at Birmingham, Birmingham (1993).

    Google Scholar 

  77. G. M. Gray and Y. Zhang, J. Cryst. Spec. Res., 23, 711 (1993).

    Google Scholar 

  78. G. P. Agnawal, C. Cojon, and C. Flytzasnis, Phys. Rev, B17, 776 (1978).

    ADS  Google Scholar 

  79. D. C. Gale, Ph.D. Thesis, The University of Alabama at Birmingham, Birmingham (1995).

    Google Scholar 

  80. Y. Shen, The Principles of Nonlinear Optics, Wiley, New York (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gray, G.M., Lawson, C.M. (1999). Structure-Property Relationships in Transition Metal-Organic Third-Order Nonlinear Optical Materials. In: Roundhill, D.M., Fackler, J.P. (eds) Optoelectronic Properties of Inorganic Compounds. Modern Inorganic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6101-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6101-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3273-0

  • Online ISBN: 978-1-4757-6101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics