Physics of Laser-Induced Hyperthermia

  • Lars O. Svaasand
Part of the Lasers, Photonics, and Electro-Optics book series (LPEO)


The rationale for the use of a new modality such as laser-induced hyperthermia in the treatment of human neoplasm is based on a broad spectrum of research. The general research on hyperthermia has been conducted over a centennial, whereas the work on laser-induced hyperthermia has been carried out over the last decade.


Thermal Wave Fluence Rate Thermal Distribution Amelanotic Melanoma Optical Penetration Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hahn GM. Hyperthermia and Cancer, Plenum Press, New York, 1982.CrossRefGoogle Scholar
  2. 2.
    Storm FK (ed.). Hyperthermia in Cancer Therapy, G.K. Hall, Boston, 1983.Google Scholar
  3. 3.
    Homback NB (ed.). Hyperthermia and Cancer, CRC Press, Boca Raton, FL, 1984.Google Scholar
  4. 4.
    Storm FK, Harrison WH, Elliott RS, Morton DL. “Normal tissue and solid tumor effects of hyperthermia in animal tumor models and clinical trials,” Cancer Res. 39: 2245–2251 (1979).Google Scholar
  5. 5.
    Berns MW, Coffey J, Wile AG. “Laser photoradiation therapy of cancer: Possible role of hyperthermia,” Lasers Surg. Med. 4: 87–92 (1984).CrossRefGoogle Scholar
  6. 6.
    Kinsey JH, Cortese DA, Neel HB. “Thermal considerations in murine tumor killing usinghematoporphyrin derivative phototherapy,” Cancer Res. 43: 1562–1667 (1983).Google Scholar
  7. 7.
    Matsumoto N, Saito H, Miyosdhi N, Nakanishi K, Fukuda M. “Combination effect of hyperthermia and photodynamic therapy on carcinoma,” Arch. Otolaryngol. Head Neck Surg. 116: 824–829 (1990).CrossRefGoogle Scholar
  8. 8.
    Mang TS. “Combination studies of hyperthermia induced by the Nd:YAG laser as an adjuvant to photodynamic therapy,” Lasers Surg. Med. 10: 173–178 (1990).CrossRefGoogle Scholar
  9. 9.
    Svaasand LO. “Photodynamic and photohyperthermic response of malignant tumors,” Med. Phys. 12: 455–461 (1985).CrossRefGoogle Scholar
  10. 10.
    Waldow SM, Henderson BW, Dougherty TJ. “Potentiation of photodynamic therapy by heat: Effect of sequence and time interval between treatments in vivo,” Lasers Surg. Med. 5: 83–94 (1985).CrossRefGoogle Scholar
  11. 11.
    Henderson BW, Waldow SM, Potter WR, Dougherty TJ. “Interaction of photodynamic therapy and hyperthermia: Tumor response and cell survival studies after treatment of mice in vivo, “ Cancer Res. 45: 6071–6077 (1985).Google Scholar
  12. 12.
    Gottfried V, Kimel S. “Temperature effects on photosensitized processes,” J. Photochem. Photobiol. B 8: 419–439 (1991).CrossRefGoogle Scholar
  13. 13.
    Kimel S, Svaasand LO, Hammer-Wilson M, Gottfried V, Cheng S, Svaasand E, Berns MW. “Demonstration of synergistic effects of hyperthermia and photodynamic therapy using the chick chorioallantoic membrane model,” Lasers Surg. Med. 12: 432–440 (1992).CrossRefGoogle Scholar
  14. 14.
    Waldow SM, Dougherty TJ. “Interaction of hyperthermia and photoradiation therapy,” Radiat. Res. 97: 380–385 (1984).CrossRefGoogle Scholar
  15. 15.
    Svaasand LO, Gomer CJ, Profio AE. “Laser-induced hyperthermnia of ocular tumors,” Appl. Opt. 28(12): 2280–2287 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    Svaasand LO, Morinelli E, Gomer CJ, Profio AE. “Optical characteristics of intraocular tumors in the visible and near infrared,” in Progress in Biomedical Optics, SPIE 1213: 2–11 (1990).Google Scholar
  17. 17.
    Waldow SM, Russel GE, Wallner PE. “Microprocessor-controlled Nd:YAG laser for hyperthermia induction in the RIF-1 tumor,” Lasers Surg. Med. 12: 417–424 (1992).CrossRefGoogle Scholar
  18. 18.
    Elias Z, Powers SK, Atstupenas E, Brown JT. “Hyperthermia from interstitial laser irradiation in normal rat brain,” Lasers Surg. Med. 7: 370–375 (1987).CrossRefGoogle Scholar
  19. 19.
    Daikuzono N, Suzuki S, Tajiri H, Tsunekawa H, Ohyama M, Joffe SN. “Laserthermia: A new computer-controlled contact Nd:YAG system for interstitial local hyperthermia,” Lasers Surg. Med. 8: 254–258 (1988).CrossRefGoogle Scholar
  20. 20.
    Hahl J, Haapiainen R, Ovaska J, Puolakkainen P, Schroeder T. “Laser-induced hyperthermia in the treatment of liver tumors,” Lasers Surg. Med. 10: 319–321 (1990).CrossRefGoogle Scholar
  21. 21.
    Panjehpour M, Overholt BF, Milligan AJ, Swaggerty MW, Wilkinson JE, Klebanow ER. “Nd:YAG laser-induced interstitial hyperthermia using a long frosted contact probe,” Lasers Surg. Med. 10: 16–24 (1990).CrossRefGoogle Scholar
  22. 22.
    Hashimoto D, Takami M, Idezuki Y. “In depth radiation therapy by YAG laser for malignant tumours in the liver under ultrasonic imaging,” Gastroenterology 88: 1663 (1985).Google Scholar
  23. 23.
    Steger AC, Lees WR, Walmsley K, Bown SG. “Interstitial hyperthermia—A new approach to local destruction of tumours,” Br. Med. J. 299: 362–365 (1989).CrossRefGoogle Scholar
  24. 24.
    Svaasand LO, Boerslid T, Oeveraasen M. “Thermal and optical properties of living tissue: Application to laser-induced hyperthermia,” Lasers Surg. Med. 5: 589–602 (1985).CrossRefGoogle Scholar
  25. 25.
    Waldow SM, Morrison PR, Grossweiner LI. “Nd:YAG laser-induced hyperthermia in a mouse tumor model,” Lasers Surg. Med. 8: 510–514 (1988).CrossRefGoogle Scholar
  26. 26.
    Welch AJ. “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. QE-20: 1471–1480 (1984).Google Scholar
  27. 27.
    Welch AJ, Wissler EJ, Priebe LA. “Significance of blood flow in laser irradiated tissue,” IEEE Trans. Biomed. Eng. 27: 164–166 (1980).CrossRefGoogle Scholar
  28. 28.
    Svaasand LO. “On the propagation of thermal waves in blood perfused tissues,” Lasers Life Sci. 2(4): 289–311 (1988).Google Scholar
  29. 29.
    Weinbaum S, Jiji LM. “A new simplified bioheat equation for the effect of blood flow on local average tissue temperature,” Trans. ASME, J. Biomech. Eng. 107: 131–139 (1985).CrossRefGoogle Scholar
  30. 30.
    Gemert MJC van, Welch AJ. “Time constants in thermal laser medicine,” Lasers Surg. Med. 9: 405–421 (1989).CrossRefGoogle Scholar
  31. 31.
    Dickson AJ, Calderwood SK. “Thermosensitivity of neoplastic tissues in vivo,” in Storm FK (ed.), Hyperthermia in Cancer Therapy, G.K. Hall, Boston, 1983, pp. 63–129.Google Scholar
  32. 32.
    Henle KJ. “Arrhenius analysis of thermal responses,” in Storm FK (ed.), Hyperthermia in Cancer Therapy, G.K. Hall, Boston, 1983, pp. 47–53.Google Scholar
  33. 33.
    Chato JC. “Measurement of properties related to thermal behavior of biological systems,” in Shitzer A, Eberhart RC (eds.), Heat Transfer in Medicine and Biology: Analysis and Applications, Plenum Press, New York: Vol. 1, pp. 167–192; Vol. 2, pp. 413–418, 1985.Google Scholar
  34. 34.
    Pennes HH. “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol.1: 93–122 (1948).ADSGoogle Scholar
  35. 35.
    Carslaw HS, Jaeger JC. Conduction of Heat in Solids, Oxford Science Publ., Oxford, 1959.Google Scholar
  36. 36.
    Kramer K, Thuran K, Deetjen P. Pfliigers Arch. Gesamte Physiol. Menschen Tiere 270: 751 (1960).Google Scholar
  37. 37.
    Ruch TC, Patton HD. Physiology and Biophysics, Saunders, Philadelphia, 1965.Google Scholar
  38. 38.
    Johnson CC. “Optical diffusion in blood,” IEEE Trans. Biomed. Eng. 17: 129–133 (1970).CrossRefGoogle Scholar
  39. 39.
    Ishimaru A. “Diffusion of light in turbid materials,” Appl. Opt. 28: 2210–2215 (1989).ADSCrossRefGoogle Scholar
  40. 40.
    Patterson MS, Chance B, Wilson BC. “Time-resolved reflectance and transmittance for the non-invasive measurements of tissue optical properties,” Appl. Opt. 28: 2331–2336 (1989).ADSCrossRefGoogle Scholar
  41. 41.
    Svaasand LO, Tromberg BJ, Haskell RC, Tsay TT, Berns MW. “Tissue characterization and imaging using photon density waves,” Opt. Eng. 32: 258–266 (1993).ADSCrossRefGoogle Scholar
  42. 42.
    Svaasand LO, Haskell RC, Tromberg BJ, McAdams M. “Properties of photon density waves at boundaries,” Conference on Biomedical Optics ’93, SPIE Proc. 1888: 214–226, Jan. 1993.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Lars O. Svaasand
    • 1
    • 2
  1. 1.Beckman Laser InstituteUniversity of California at IrvineIrvineUSA
  2. 2.Norwegian Institute of TechnologyTrondheimNorway

Personalised recommendations