Skip to main content

Pulsed Photothermal Radiometry Studies in Tissue Optics

  • Chapter
Optical-Thermal Response of Laser-Irradiated Tissue

Abstract

The phenomenon of thermal radiative emission is the basis of a materials evaluation technique known as photothermal radiometry. This technique involves irradiation of the sample with monochromatic light which is absorbed, causing a temperature rise. The increase in the blackbody radiative emission due to this rise is recorded with an infrared detector that views the sample surface. The detected signal contains information about the optical and thermal properties of the sample. Previous studies have used either modulated or pulsed light excitation methods; in this chapter, we will examine the applicability of the latter approach, known as pulsed photothermal radiometry (PPTR), to the study of optical properties of tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leung WP, Tam AC. “Techniques of flash radiometry,” J. Appl. Phys. 56: 156–161 (1984).

    Article  ADS  Google Scholar 

  2. Imhof RE, Birch DJS, Thornley FR, Gilchrist JR, Strivens TA. “Optothermal transient emission radiometry,” J. Phys. E: Sci. Instrum. 17: 521–525 (1984).

    Article  ADS  Google Scholar 

  3. Born M, and Wolf E. Principles of Optics, Pergamon Press, New York, 1980.

    Google Scholar 

  4. Imhof RE, Birch DJS, Thornley FR, Gilchrist JR, Strivens TA. “Opto-thermal monitoring of paint degradation,” J. Phys. D: Appl. Phys. 18: 103–106 (1985).

    Article  ADS  Google Scholar 

  5. Balageas DL, Krapez JC, Cielo P. “Pulsed photothermal modeling of layered materials,” J. Appl. Phys. 59: 348–357 (1986).

    Article  ADS  Google Scholar 

  6. Leung WP, Tam AC. “Thermal diffusivity in thin films measured by single-ended pulsed-laser-induced thermal radiometry,” Optics Lett. 9: 93–95 (1984).

    Article  ADS  Google Scholar 

  7. Leung WP, Tam AC. “Thermal conduction at a contact interface measured by pulsed photothermal radiometry,” J. Appl. Phys. 63: 4505–4510 (1988).

    Article  ADS  Google Scholar 

  8. Long FH, Deutsch TF. “Pulsed photothermal radiometry of human artery,” IEEE J. Quantum Electron. 23: 1821–1826 (1987).

    Article  ADS  Google Scholar 

  9. Long FH, Nishioka NS, Deutsch TF. “Measurement of the optical and thermal properties of biliary calculi using pulsed photothermal radiometry,” Lasers Surg. Med. 7: 461–466 (1987).

    Article  Google Scholar 

  10. Long FH, Anderson RR, Deutsch TF. “Pulsed photothermal radiometry for depth profiling of layered media,” Appl. Phys. Lett. 51: 2076–2078 (1987).

    Article  ADS  Google Scholar 

  11. Anderson RR, Beck H, Bruggemann U, Farinelli W, Jacques S, Parrish JA. “Pulsed photothermal radiometry in turbid media: Internal reflection strongly influences optical dosimetry,” Appl. Opt 28: 2256–2262 (1989).

    Article  ADS  Google Scholar 

  12. Prahl SA, Vitkin IA, Bruggemann U, Wilson BC, Anderson RR. “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37: 1203–1217 (1992).

    Article  Google Scholar 

  13. Vitkin IA, Wilson BC, Kaplan RS, Anderson RR. “The feasibility of monitoring exogenous dye uptake in tissue in vivo using pulsed photothermal radiometry,” J. Photochem. Photobiol. B: Biol. 16: 235–239 (1992).

    Article  Google Scholar 

  14. Carslaw HS, Jaeger JC. Conduction of Heat in Solids, Claredon, Oxford, 1986.

    MATH  Google Scholar 

  15. Arpaci VS. Conduction Heat Transfer, Addison-Wesley, Menlo Park, 1966.

    MATH  Google Scholar 

  16. Brewster MQ. Thermal Radiative Transfer and Properties, McGraw-Hill, New York, 1992.

    Google Scholar 

  17. Patterson MS, Wilson BC, Wyman DR. “The propagation of optical radiation in tissue I: Models of radiation transport and their application,” Lasers Med. Sci. 6: 155–168 (1991).

    Article  Google Scholar 

  18. Duderstadt JJ, Hamilton LJ. Nuclear Reactor Analysis, Wiley, New York, 1976.

    Google Scholar 

  19. Ishumaru A. Wave Propagation and Scattering in Random Media, Vol. 1, Academic, New York, 1978.

    Google Scholar 

  20. Patterson MS, Wilson BC, Graff R. “In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine,” Photochem. Photobiol. 51: 343–349 (1990).

    Article  Google Scholar 

  21. Egan WG, Hilgeman TW. Optical Properties of Inhomogeneous Materials, Academic Press, New York, 1979.

    Google Scholar 

  22. Flock ST, Patterson MS, Wilson BC, Wyman DR. “Monte Carlo modeling of light propagation in highly scattering tissues, I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36: 1162–1168 (1989).

    Article  Google Scholar 

  23. Nordal P-E, Kanstad SO. “Visible-light spectroscopy by photothermal radiometry using an incoherent source,” Appl. Phys. Lett. 38: 486–488 (1981).

    Article  ADS  Google Scholar 

  24. Bults G, Nordal P-E, Kanstad SO. “In vivo studies of gross photosynthesis in attached leaves by means of photothermal radiometry,” Biochim. Biophys. Acta 682: 234–237 (1982)

    Article  Google Scholar 

  25. Obremski SM, LaMuraglia GL, Bruggemann U, Anderson RR. “A comparison of thermal and optical techniques for describing light interaction with vascular grafts, sutures and thrombus,” Laser—Tissue Interactions II, SPIE 1427: 327–334 (1991).

    Article  ADS  Google Scholar 

  26. Imhof RE, Whitters CJ, Birch DJS. “Opto-thermal in vivo monitoring of sunscreens on skin,” Phys. Med. Biol. 35: 95–102 (1990).

    Article  Google Scholar 

  27. Wilson BC. “Modeling and measurements of light propagation in tissue for diagnostic and therapeutic applications,” in Chester AN (ed.), Laser Systems for Photobiology and Photomedicine, Plenum Press, New York, 1991, pp. 13–27.

    Chapter  Google Scholar 

  28. Anderson RR, Parrish JA. “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220: 524–527 (1983).

    Article  ADS  Google Scholar 

  29. Croitoru N, Dror J, Gannot I. “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29: 1805–1809 (1990).

    Article  ADS  Google Scholar 

  30. Zur A, Katzir A. “Use of infrared fibers for low temperature radiometric measurements,” Appl. Phy.s. Len. 48: 499–502 (1986).

    Article  ADS  Google Scholar 

  31. Drexhage MG. “Glass optical fibers enter the infrared,” Laser Focus World, 27: 149–153 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vitkin, I.A., Wilson, B.C., Anderson, R.R. (1995). Pulsed Photothermal Radiometry Studies in Tissue Optics. In: Welch, A.J., Van Gemert, M.J.C. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Lasers, Photonics, and Electro-Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6092-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6092-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6094-1

  • Online ISBN: 978-1-4757-6092-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics