Optical Fiber Sensors: Optical Detection



An optical sensor is a system in which some parameter characteristic of an optical signal is modulated in a reproducible and recoverable manner by a measurand. Although the transduction mechanism is optical, it is necessary to convert the optical signal to an electrical one in order that it may be processed and either recorded or displayed. This function is accomplished using a photodetector, which converts optical energy to electrical energy. The basic photodetector generally produces only a low level electrical signal, which must immediately by amplified before it can undergo further processing. The combination of a photodetector and its immediate amplification is called a receiver. The role of the receiver in an idealized optical fiber sensor system is shown in Fig. 8.1.


Quantum Efficiency Optical Signal Dark Current Shot Noise Depletion Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, S. E. and Kaminow, I. P. (1988) Optical Fibre Telecommunications II, Academic Press, Chapter 1, 2–28.Google Scholar
  2. 2.
    Smith, R. A., Jones, F. E. and Chagmar, R. P. (1968) The detection and measurement of infra-red radiation,Oxford University Press.Google Scholar
  3. 3.
    Roes, L. C. and Dacus, E. M. (1945) The design and construction of rapid response thermocouples for use in radiation detection in infrared spectrographs. Rev. Sci. Instrum., 16, 172.ADSCrossRefGoogle Scholar
  4. 4.
    Jones, C. E., Hilton, R. A., Damrel, J. B. and Helms, C. C. (1965) The cooled germanium bolometer as a far infrared detection. Appl. Opt. 4, 683.ADSCrossRefGoogle Scholar
  5. 5.
    Golay, M. J. E. (1947) Theoretical considerations in heat and infrared detection, with particular reference to the pneumatic details: a pneumatic infrared detector. Rev. Sci. Instrum., 18, 347.ADSCrossRefGoogle Scholar
  6. 6.
    Chynoweth, A.G. (1956) Surface space charge layers in barium titanate. Phys. Rev., 102, 705.ADSCrossRefGoogle Scholar
  7. 7.
    Steier, W.H. and Yamashita, E. (1963) A pyroelectric effect detector for submillimetre wavelengths. Proc IEEE, 51, 1144.CrossRefGoogle Scholar
  8. 8.
    Sommer, A. H. (1968) Photoemissive materials, Wiley, New York.Google Scholar
  9. 9.
    Prescott, J. R. (1966) A statistical model for photomultiplier single electron statistics. Nucl. Instrum. Methods, 39, 173.ADSCrossRefGoogle Scholar
  10. 10.
    Coleman, C. I. and Boksenberg, A. (1976) Image intensifiers. Contemp. Phys., 17, 209.ADSCrossRefGoogle Scholar
  11. 11.
    Lampton, M. (1981) The microchannel image intensifier. Sci. Am., 245, 46.CrossRefGoogle Scholar
  12. 12.
    Moss, T. S. (1959) Optical properties of semiconductors, Butterworths, Belfast.Google Scholar
  13. 13.
    Kingston, R. H. (1978) Detection of optical and infrared radiation, Springer Verlag, Berlin.Google Scholar
  14. 14.
    Avery, D. G., Goodwin, D. W. and Rennie, A. E. (1957) New infrared detectors using indium antimonide. J. Sci. Inst., 34, 394.ADSCrossRefGoogle Scholar
  15. 15.
    Blue, M. D. (1964) Optical absorption in HgTe and HgCdTe. Phys. Rev., 134, 1226.ADSCrossRefGoogle Scholar
  16. 16.
    Forrest, S. R. (1984) IEEE J. Lightwave Technol.,LT3 347.Google Scholar
  17. 17.
    Melchior, H. (1977) Detectors for lightwave communications. Physics Today, 30, 32.CrossRefGoogle Scholar
  18. 18.
    Sze, S.M. (1967) Physics of semiconductor devices, Wiley, New York.Google Scholar
  19. 19.
    Lee, T. P. and Li, T. (1979) Photodetectors in Optical Fiber Telecommunications, eds Miller, S. E. and Chynoweth, A. G., Academic Press, New York.Google Scholar
  20. 20.
    McKay, K. G. and McAfee, K. B. (1953) Electron multiplication in silicon and germanium. Phys. Rev., 91, 1079.ADSCrossRefGoogle Scholar
  21. 21.
    Lee, C. A., Logan, R. A., Batdorf, R. L., Kleimack, J. J. and Wiegman, W. (1964) Ionisation rates of holes and electrons in silicon. Phys. Rev., 134, A761.ADSCrossRefGoogle Scholar
  22. 22.
    Miller, S. M. (1955) Avalanche breakdown in germanium. Phys. Rev., 99, 1234.ADSCrossRefGoogle Scholar
  23. 23.
    Anderson, L. K., McMullin, P.G., D’Asciro, L. A. and Goetzberger, A. (1965) Microwave photodiodes exhibiting microplasma-free carrier multiplication. Appl. Phys. Letts., 6, 62.ADSCrossRefGoogle Scholar
  24. 24.
    Melchion, H. and Lynch, W. T. (1966) Signal and noise response of high speed germanium avalanche photodiodes. IEEE Trans Electron Devices, ED13, 829.Google Scholar
  25. 25.
    Lindley, W.T., Phelan, R. J., Wolfe, C. M. and Foyt, A. G. (1969) GaAs Schottky barrier avalanche photodiodes. Appl. Phys. Letts., 14, 197.ADSCrossRefGoogle Scholar
  26. 26.
    Brown, R. G. W., Jones, R., Dainty, J. G. and Dudley, K. D. (1987) Characterization of silicon avalanche photoelectrodes for photon correlation measurements. Appl. Opt., 26, 1562.Google Scholar
  27. 27.
    Melchior, H. (1972) Demodulation and photodetection techniques in Laser Handbook, eds. Arecchi, F. T. and Schulz-Dubois, E. D., Elsevier, Amsterdam.Google Scholar
  28. 28.
    Personick, S. D. (1971) Statistics of a general class of avalanche detectors with application to optical communication. Bell Syst. Tech J., 50, 3075.Google Scholar
  29. 29.
    McIntyre, R. J. (1972) The distribution of gain in uniformly multiplying avalanche photodiodes. IEEE Trans Electron Devices, ED19, 703.Google Scholar
  30. 30.
    Webb, P. P., McIntyre, R. J. and Conradi, J. (1974) Properties of avalanche photodiodes. RCA Rev, 35, 234.Google Scholar
  31. 31.
    Forrest, S. R. (1988) Optical detectors for lightwave communications in Optical Fibre Telecommunications II, eds. S.E. Miller and I. P. Kaminow, Academic Press, San Diego.Google Scholar
  32. 32.
    Malyon, D. J. and McDonna, A.P. (1982) Electron Letts, 18, 445.CrossRefGoogle Scholar
  33. 33.
    Schneider, M. V. (1966) Schottky barrier photodiodes with antireflection coating. Bell Syst. Tech. J., 45, 611.Google Scholar
  34. 34.
    Melchior, H. (1973) Sensitive high speed photodetectors for the demodulation of visible and near infra-red light. J. Lumin, 7, 390.CrossRefGoogle Scholar
  35. 35.
    Webb, P. P., McIntyre, R. J. and Conradi, J. (1974) Properties of avalanche photodiodes. RCA Rev, 35, 234.Google Scholar
  36. 36.
    Forrest, S. R., Kim, O. K. and Smith, R. G. (1982) Appl. Phys. Lett., 41, 95.ADSCrossRefGoogle Scholar
  37. 37.
    Kasper, B. L. (1988) Receiver design in Optical Fibre Telecommunications II, eds Miller, S. E. and Kaminow, I. P., Academic Press, San Diego.Google Scholar
  38. 38.
    Goell, J. E. (1974) An optical repeater with high-impedance input amplifier. Bell Syst. Tech. J., 53, 629.Google Scholar
  39. 39.
    Ogawa, K. and Chinnock, E. L. (1974) GaAs FET transimpedance front-end design for a wideband optical receiver. Electron Letts., 15, 650.ADSCrossRefGoogle Scholar
  40. 40.
    Runge, P. K. (1976) An experimental 50Mb/s fibre optic PCM repeater. IEEE Trans. Commun., COM24, 413.Google Scholar
  41. 41.
    Muoi, T. V. (1984) Receiver design for high speed optical fibre systems. IEEE J. Lightwave Tech, LT2, 243.Google Scholar
  42. 42.
    Smith, D. R., Hooper, R. C., Smyth, P. P. and Waker, D. (1982) Experimental comparison of a germanium avalanche photodiode and InGaAs PINFET receiver for longer wavelength optical communication systems. Electron Letts., 18, 453.CrossRefGoogle Scholar
  43. 43.
    Kasper, B. L., Campbell, J. C., Talman, J. R., Gnauck, A. H., Bowers, J. E. and Holden, W. S. (1987) An APD/FET optical receiver operating at 8Gbit/sec. IEEE J. Lightwave Tech.,LT5 344.Google Scholar
  44. 44.
    Smith, D. R., Hooper, R. C. and Garrett, I. (1978) Receivers for optical communications: a comparison of avalanche photodiodes with PIN - FET hybrids. Opt. Quantum Electron., 10, 293.CrossRefGoogle Scholar
  45. 45.
    Pearsall, T. P. and Pollack, M. A. (1985) Compound semiconductor photodiodes in Semiconductors and semimetals, ed. Tsang, W. T., 22, 174, Academic Press, Orlando.Google Scholar
  46. 46.
    Conner, F. R. (1982) Noise,Edward Arnold.Google Scholar
  47. 47.
    Personick, S. D. (1971) New results on avalanche multiplication statistics with applications to optical detection. Bell Syst Tech J, 50, 167.Google Scholar
  48. 48.
    Personick, S. D. (1973) Receiver design for digital optical fibre communication systems. Bell Syst Tech J, 52, 843.Google Scholar
  49. 49.
    McIntyre, R. J. and Conradi, J (1974) Properties of avalanche photodiodes. RCA Rev,35 234.Google Scholar
  50. 50.
    Garrett, I (1981) Receivers for optical fibre communications. Electron and Radio Eng, 51, 349.CrossRefGoogle Scholar

Further Reading

  1. 51.
    Jones, R., Oliver, C. J. and Pike, E. R. (1971) Experimental and theoretical comparison of photon counting and current measurements of light intensity. Appl. Opt., 10, 1673.ADSCrossRefGoogle Scholar
  2. 52.
    Personick, S. D. (1979) Receiver design in Optical Fibre Telecommunications, eds. Miller, S. E. and Chynoweth, A. G., Academic Press, New York.Google Scholar
  3. 53.
    Boyd, R. W. (1983) Radiometry and the Detection of Optical Radiation,Wiley Series in Pure and Applied Optics.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

There are no affiliations available

Personalised recommendations