Optical Fiber Sensors: Optical Sources



The extensive range of optical fiber sensors available places considerable demands on the illumination used (and the associated detectors) and a wide variety of optical sources may be employed to energize these sensor devices. For example, in the simplest types of optical sensors, such as those using shutter arrangements [1], the selection of the most appropriate type of illumination is relatively easy due to the limited constraints that there are upon the nature of the source itself. By contrast, in distributed optical fiber sensors using time-domain reflectometry [2], the requirement is for a light beam which only is available from sophisticated short pulse high power lasers, and spectroscopic sensors in particular require high spectral brightness to be effective [3].


Light Emit Diode Fiber Laser Semiconductor Laser Optical Fiber Sensor Laser Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spillman, W. B., Patriquin, D. R. and Gowne, D. H. (1989) Fiber optic linear displacement sensor based upon a variable period diffraction grating. Appl. Optics, 28. 3550–4.ADSCrossRefGoogle Scholar
  2. 2.
    Rogers, A. J. (1981) POTDR: a technique for the measurement of field distributions. Appl. Optics 20. 1060–74.ADSCrossRefGoogle Scholar
  3. 3.
    Mlanovich, F. P., Brown, S. B., Colston, B. W., Daly, P. F. and Langry, K. C. (1994) A Fiber Optic Sensor system for monitoring chlorinated hydrocarbon pollutants Talanta, 41, 2189–94.CrossRefGoogle Scholar
  4. 4.
    Grattan, K. T. V. and Ning, Y. N. (1998) Classification of optical fiber sensors in Optical Fiber Sensor Technology 2: Devices and Technology, eds. Grattan, K. T. V. and Meggitt, B. T., Chapman and Hall, London, 1.Google Scholar
  5. 5.
    Jackson, D. A. (1998) Progress in optical fiber interferometry in Optical Fiber Sensor Technology 2: Devices and Technology, eds. Grattan, K. T. V. and Meggitt, B. T. Kluwer Press, London, 167–206.Google Scholar
  6. 6.
    Chen, S. and Meggitt, B. T. (1999) Intrinsic position sensing using optical fiber and coherence domain polarimetry in Optical Fiber Sensor Technology 3: Applications and systems, eds. Grattan, K. T. V. and Meggitt, B. T. Kluwer Academic Press, London, 241.Google Scholar
  7. 7.
    Willard, H. H., Merritt, L. L., Dean, J. A. and Settle, F. A. (1988) Instrumental Methods of Analysis. 7th edn. Wandsworth, Belmont CA.Google Scholar
  8. 8.
    Solymar, L. and Walsh, D. (1979) Lectures on the Electrical Properties of Materials. 2nd edn, Oxford University Press, Oxford.Google Scholar
  9. 9.
    Accufiber Corporation (1986) Manufacturer’s data, Vancouver, Canada.Google Scholar
  10. 10.
    Zhang, Z., Grattan, K. T. V. and Palmer, A. W. (1992) Fiber optic temperature sensor based on the cross referencing between black body radiation and fluorescent lifetime. Rev. Sci. Instrum., 63. 3177–81.ADSCrossRefGoogle Scholar
  11. 11.
    Osram GmbH (1991) Catalog on Light for Photo, Film, TV and Stage Applications Google Scholar
  12. 12.
    Pease. B. F. (1980) Basic Instrumental Analysis, Van Nostrand, New York.Google Scholar
  13. 13.
    Dress, P., Belz, M., Klein, K. F., Grattan, K. T. V. and Franke, H. (1998) Physical analysis of teflon-coated capillary waveguides. Sensor and Actuators B, 51, 278–84.CrossRefGoogle Scholar
  14. 14.
    Briggs, R., Grattan, K. T. V., Mouziz, Z. and Elvidge, A. F. (1990) On-line monitoring of residual chlorine, in Instrumentation Control and Automation of Water and Waste Water Treatment and Transport Systems, Pergamon Press, Oxford, pp. 27–38.Google Scholar
  15. 15.
    Ferendeci, A. M. (1991) Physical Foundations of Solid State and Electron Devices. McGraw-Hill, New York.Google Scholar
  16. 16.
    Kindl, H. and Mollmer, F. (1989) Opto semiconductors - briefly explained Siemens Aktiengesellschaft, Germany, data sheet #B143–B6225-x-x-7600.Google Scholar
  17. 17.
    Medlock, R. S. (1986) Review of modulating techniques for fibre optic sensors. Int. J. Opt. Sens. 1, 43–68.Google Scholar
  18. 18.
    Grattan, K. T. V., Selli, R. K. and Palmer, A. W. (1986) A prism configuration literally referenced temperature sensor. Int. J. Opt. Sens., 1, 507–14.Google Scholar
  19. 19.
    Grattan, K. T. V., Mouaziz, Z. and Palmer, A. W. (1987) Dual wavelength optical fibre sensor for pH measurement. Biosensors, 3, 17–25.CrossRefGoogle Scholar
  20. 20.
    Wang, W. M., Boyle, W. J. O., Grattan, K. T. V. and Palmer, A. W. (1993) Self-mixing interference in a diode laser: experimental observations and theoretical analysis. App. Opt., 32, 1551–57.ADSCrossRefGoogle Scholar
  21. 21.
    Wang, Q., Ning, Y. N., Grattan, K. T. V. and Palmer, A. W. (1997) A multimode optical-fibre sensing system using white-light interferometry and a two-wavelength synthetic source. Sensors and Actuators A, 58, 191–5.CrossRefGoogle Scholar
  22. 22.
    Nakamura, S. (1998) Light emission moves into the blue. Physics World, 11, 31–5.Google Scholar
  23. 23.
    Amano, H. (1989) p-type conduction in Mg-doped GaN treated with low-energy electron beam iradiation (LEEBI). Japan J. Appl. Phys., 28, L2112.Google Scholar
  24. 24.
    Friend, R., Burroughes, J. and Shimoda, T. (1999) Polymer diodes, Phys. World, 12 (6), 35–40.Google Scholar
  25. 25.
    Wilson, J. and Hawkes, J. F. B. (1987) Lasers. Principles and Applications Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  26. 26.
    Forrester, P. A. and Hulme, K. F. (1981) Laser rangefinders. Optics Quanta. Electron. 13, 259–93.ADSCrossRefGoogle Scholar
  27. 27.
    Yariv, A. (1971) Introduction to Optical Electronics Holt, Rinehart and Winston, New York.Google Scholar
  28. 28.
    Wilson, J. and Hawkes, J. F. B. (1989) Optoelectronics, an Introduction, 2nd edn, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  29. 29.
    Svelto, O. (1998) Principles of Lasers, 4th Edn. Plenum Press, New York.Google Scholar
  30. 30.
    Maiman, T. H. (1960) Stimulated optical radiation in ruby masers. Nature 187, 493.ADSCrossRefGoogle Scholar
  31. 31.
    Hewlett Packard (1987) Laser Interferometer Measurement System JP5528A, Data Sheet (5952–7935).Google Scholar
  32. 32.
    Langford, N. (1998) Fiber lasers in Optical Fiber Sensor Technology 2: Devices and Technology, eds. Grattan, K. T. V. and Meggitt, B. T. Kluwer Press, London, 37.Google Scholar
  33. 33.
    Grattan, K. T. V., Palmer, A. W. and Selli, R. K. (1988) Ruby decay-time fluorescent thermometer in a fiber-optic configuration. Rev. Sci. Instrum. 59, 1328–35.ADSCrossRefGoogle Scholar
  34. 34.
    Harvey, A. B. (1978) Coherent anti-Stokes Raman spectroscopy (CARS). Anal. Chem., 50, 905A.Google Scholar
  35. 35.
    Compton, R. H., Grattan, K. T. V. and Morrow, T. (1980) Photophysical parameters for potential vapor phase dye laser mdedia. Appl. Phys., 22, 307–14.ADSCrossRefGoogle Scholar
  36. 36.
    Grattan, K. T. V., Zhang, Z. Y. and Sun, T. (1998) Luminescent optical fibers in sensing, in Optical Fiber Sensor Technology, 4. Environmental and Chemical Sensing (eds. Grattan, K. T. V. and Meggitt, B. T. ). Chapman and Hall, London, 205.Google Scholar
  37. 37.
    Rao, Y. J. and Jackson, D. A. (1999) Principles of Fiber-Optic Interferometry in sensing in Optical Fiber Sensor Technology, 1. (eds. Grattan, K. T. V. and Meggitt, B. T.). Chapman and Hall, London, 167.Google Scholar
  38. 38.
    Bosch, T. and Lescure, M. (1995) Selected Papers on Laser Distance Measurement SPIE Milestone Series, Volume MS 115 Google Scholar
  39. 39.
    Loveland, D. G. and Webb. C. E. (1992) Measurement of the electron density in a strontium vapour laser. J. Phys. D: Appl. Phys. 25, 597–601.ADSCrossRefGoogle Scholar
  40. 40.
    Spectra Diode (1991) Laboratories Product Catalog. Palo Alto, CA.Google Scholar
  41. 41.
    Dakin, J. P., Pratt, D. J., Bilsby, G. and Ross, N. (1985) Distributed anti-Strokes Raman thermometry. Proceedings 3rd OFS (International Conference on Optical Fiber Sensors). San Diego, CA. USA. Post-deadline paper PDS3 (IEEE/USA).Google Scholar
  42. 42.
    Compton, R. H., Grattan, K. T. V. and Morrow, T. (1980) Extinction coefficients and quantum yields for triplet-triplet absorption using laser flash photolysis. J. Photochem, 14, 61–6.CrossRefGoogle Scholar
  43. 43.
    Ewing, J. J. (1979) Excimer Lasers in Laser Handbook Vol. 3 (ed: Stitch, M. L.), North-Holland, Amsterdam, 135–97.Google Scholar
  44. 44.
    Klein, K-F., Schliessmann, P. and Smolka, E. (1997) UV-stabilized silica-based fiber for applications around 200nm wavelength. Sens. Actuators, B39, 305–9.CrossRefGoogle Scholar
  45. 45.
    Handerek, V. Fiber gratings: principles, fabrication and properties in Optical Fiber Sensor Technology Vol.2: Devices and Technology (eds. Grattan, K. T. V. and Meggitt, B. T.), Kluwer Academic Publishers, London, 329.Google Scholar
  46. 46.
    Sharp Ltd (1992) Manufacturer’s Data Book.Google Scholar
  47. 47.
    Snitzer, E., Po, H., Hakimi, F., Tumminelli, R. and Mccollum, B. C. (1988) Double-clad offset core Nd fiber laser. Proc. OFS’88, New Orleans, Postdeadline paper, PD5.Google Scholar
  48. 48.
    Reekie, L., Mears, R. J., Poole, S. B. and Payne, D. N. (1986) Tunable single-mode fiber lasers. IEEE/OSA J. Lightwave Technol. LT-4(7), 956–60.Google Scholar
  49. 49.
    Nakazawa, M., Kimura, Y. and Susuki, K. (1989) Efficient Era+-doped optical fiber amplifier pumped by a 1.48µm InGaAsP laser diode, Appl. Phys. Lett., 54 (4), 295–7.ADSCrossRefGoogle Scholar
  50. 50.
    Kimura, Y., Susuki, K. and Nakazawa, M. (1989) Laser-diode-pumped mirror-free Era+-doped fiber laser. Opt. Lett., 14 (18), 999–1001.ADSCrossRefGoogle Scholar
  51. 51.
    Digonnet, M. J. F. (1993) Rare Earth Doped Fiber Lasers and Amplifiers. Marcel Dekker, New York, 1993.Google Scholar
  52. 52.
    Langford, N. Optical fiber lasers in Optical Fiber Sensor Technology Vol.2: Devices and Technology (eds. Grattan, K. T. V. and Meggitt, B. T.), Kluwer Academic Publishers, London, 37.Google Scholar
  53. 53.
    Muto, S. (1993) Fiber dye lasers and sensors using fluorescent dye-doped plastic fibers. POF’93, Hague, June 28–29, 1993, 149–152.Google Scholar
  54. 54.
    Sharma, P. K., van Doom, A. R., Staring, E. G. J. (1993) Optical gain in rare earth doped polymer amplifiers. POF’93, Hague, June 28–29, 1993, 115–117.Google Scholar
  55. 55.
    Chu, P. L. and Peng, G. D. (1997) Dye doped and rare earth doped polymer optical fibres. POF’97, Hawaii, USA, Sept. 1997, 76–77.Google Scholar
  56. 56.
    Editorial: Laser Focus World (1999), Feburary, p5, USAGoogle Scholar
  57. 57.
    Barnes, W. L., Dakin, J. P., Edwards, H. et al (1992) Tunable fiber laser source for methane detection at 1.681Am. Proc SPIE, 1796.Google Scholar
  58. 58.
    Crossley, S. D. (1992) Review of emitters and detectors for optical gas and chemical sensing. Proc SPIE, 1796.Google Scholar
  59. 59.
    Laser Focus World, USA (published monthly)Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

There are no affiliations available

Personalised recommendations