Fiber Optic White Light Interferometric Sensors



The use of optical interferometric techniques in optical fiber sensor applications allows access to the high resolution and large dynamic range that is associated with these methods. Conventional interferometric fringe-counting techniques allow micrometer (μm) displacement resolutions and the additional use of phase-tracking methods increases the attainable resolution down to the nanometer (nm) scale.


Light Emit Diode Fringe Pattern Michelson Interferometer Fringe Visibility Moire Fringe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jackson, D. A. and Jones, J. D. C. (1986) Fibre optic sensors. Optical Acta, 33 1469–1503.ADSCrossRefGoogle Scholar
  2. 2.
    AI-Chalabi, S. A., Culshaw, B. and Davies, D. E. N. (1983) Partially Coherent Sources in Interferometry. IEE (No. 22 1) Proc. 1st Int Conf. Optical Fibre Sensors, London, 132–5.Google Scholar
  3. 3.
    Bosselman, Th. and Ulrich, R. (1984) High accuracy position-sensing with fibre-coupled white light interferometers in Proc. 2nd Int. Conf. Optical Fibre Sensors, Stuttgart, 3615.Google Scholar
  4. 4.
    Deslisle, C. and Cielo, P (1975) Application de la modulation spectrale a la transmission de l’information. Can. J. Phys., 53, 1047–53.ADSCrossRefGoogle Scholar
  5. 5.
    Velluet, M. T., Graingorge, Ph. and Arditty, H. J. (1987) Fibre optic pressure sensor using white-light interferometry. Fibre Optic Sensors V, SPIE 838, 78–83.CrossRefGoogle Scholar
  6. 6.
    Arditty, H. and Valluet, M. T. (1987) Capteur de deplacements a fibres functionnant en lwniere blanche. Patent No. 2612 627/ 8703559 Paris.Google Scholar
  7. 7.
    Harl, J. C., Saaski, E. W. and Mitchell, G. L. (1987) Fibre optic temperature sensor using spectral modulation. Fibre Optics and Laser Sensors V, SPIE 838, 257–61.CrossRefGoogle Scholar
  8. 8.
    Dabkiewicz, Ph. and Ulrich, R. (1986) Fibre-optic angular sensor with interleaved channel spectra. Opt. Lett., 5435–545.Google Scholar
  9. 9.
    Dabkiewicz, Ph. and Ulrich, R. (1985) Spectral encoding for fibre-optic industrial sensors. EFOC/LAN 85, Montriex, Swizerland, 212–4.Google Scholar
  10. 10.
    Boheim, G. (1985) Remote displacement measurement using a passive interferometer with fibre-optic link. App. Opt, 16, 2335–40.ADSCrossRefGoogle Scholar
  11. 11.
    Boheim, G. (1987) Fibre-linked interferometric pressure sensor. Rev. Sci. Instrum. 58, 1655–9.ADSCrossRefGoogle Scholar
  12. 12.
    Kersey, A. D. and Dandridge, A. (1986) Phase reduction in coherent-multiplexed interferometric fibre sensors. Elect. Lett., 22, 616–7.ADSCrossRefGoogle Scholar
  13. 13.
    Ning, Y., Grattan, K. T. V., Meggitt, B. T. and Palmer, A. W. (1989) Characteristics of laser diodes for interferometry. App. Opt., 28, 3657–61.ADSCrossRefGoogle Scholar
  14. 14.
    Change, Y. C. and Shay, T. M. (1988) Frequency stabilisation of a laser diode to a FabryPerot interferometer. Opt. Eng., 27, 424–7.Google Scholar
  15. 15.
    Kersey, A. D. and Dandridge, A. (1987) Dual wavelength approach to interferometric sensors. SPIE 798, 176.CrossRefGoogle Scholar
  16. 16.
    Jackson, D. A., Leilabady, P. A. and Meggitt, B. T. (1987) Optical fibre measuring system. European Patent No. 87308064.2.Google Scholar
  17. 17.
    Mariller, C. and Lequime, M. (1987) Fibre optic white-light birefringence temperature sensor. Fibre Optic Sensors V, SPIE 798, 121–30.CrossRefGoogle Scholar
  18. 18.
    Meggitt, B. T. (1991) Optical fibre sensors for temperature and pressure measurement: Minimal Invasive Diagnostics. ESTEC/(Sira) Report No. 8043/88/NL/PB, 2.Google Scholar
  19. 19.
    Boheim, G. (1986) Fibre optic thermometer using semiconductor etalon sesnor. Elect. Lett., 22, 238–9.ADSCrossRefGoogle Scholar
  20. 20.
    Lee, C. E. and Taylor, H. F. (1991) Fibre optic Fabry-Perot temperature sensor using a low coherence light source. JLightwave Tech., 9, 129–34.CrossRefGoogle Scholar
  21. 21.
    Georges, A. S., Farahi, F., Newson, T. P., Jones, D. C. and Jackson, A. J. (1988) Fibre optic interferometric sensors using a low coherence source: Dynamic range enhancement. Int. J Opto-Elect., 3, 311–22.Google Scholar
  22. 22.
    Fritsch, K. (1987) Linear capacitive displacement sensor with frequency readout. Rev. Sci. Instrum., 58, 861–3.ADSCrossRefGoogle Scholar
  23. 23.
    Kim, B. Y. and Shaw, H. J. (1984) Phase reading, all fibre-optic gyroscope. Opt. Lett., 9, 378–80.ADSCrossRefGoogle Scholar
  24. 24.
    Meggitt, B. T., Lewin, A. C. and Jackson, D. A. (1989) A fibre optic non-contacting refemce grade vibration sensor. SPIE 1120, 307.ADSCrossRefGoogle Scholar
  25. 25.
    Meggitt, B. T., Boyle, W. J. O., Grattan, K. T. V., Baruch, A. E. and Palmer, A. W. (1991) Heterodyne processing scheme for low coherence interferometric sensor systems. IEEProc. J., 138, 393–5.Google Scholar
  26. 26.
    Kock, A. and Ulrich, R. (1990) Displacement sensor with elctronically scanned white-light interferometer. Fibre Optic Sensors IV, SPIE 1267, 128–33.ADSGoogle Scholar
  27. 27.
    Meggitt, B. T. and S, Chen. (1991) A review and performance assessment of the electronically-scanned white-light interferometric technique. OSCA (UK) Report No. 96.Google Scholar
  28. 28.
    Chen, S., Grattan, K. T. V., Palmer, A. W. and Meggitt, B. T. (1992) Digital Processing Techniques for Electronically Scanned Optical fibre white light interferometry. App. Opt., 31, 6003–10.ADSCrossRefGoogle Scholar
  29. 29.
    Chen, S., Meggitt, B. T., Palmer, A. W. and Grattan, K. T. V. (1993) Instantaneous fringe order identification using dual broad band sources with widely spaced wavelengths. Elect.Lett., 29, 334–5.CrossRefGoogle Scholar
  30. 30.
    Chen, S., Meggitt, B. T. and Rogers, A. J. (1990) Electronically scanned white-light interferometry with enhanced dynamic range. Elect. Lett., 26, 1663–5.CrossRefGoogle Scholar
  31. 31.
    Chen, S., Meggitt, B. T. and Rogers, A. J. (1991) An electronically scanned white-light Young’s interferometer. Opt. Lett., 16, 761–3.ADSCrossRefGoogle Scholar
  32. 32.
    Chen, S., Palmer, A. W., Grattan, K. T. V. and Meggitt, B. T. (1991) Study of electronically scanned optical fibre Fizeau interferometer. Elect. Lett., 27, 1032–4.CrossRefGoogle Scholar
  33. 33.
    Weir, K., Boyle, W. J. O., Palmer, A. W., Grattan, K. T. V. and Meggitt, B. T. (1991) Low coherence interferometric optical fibre vibrometer using novel optical signal processing scheme. Elect. Lett., 27, 1658–60.CrossRefGoogle Scholar
  34. 34.
    Weir, K., Boyle, W. J. O., Meggitt, B. T., Palmer, A. W. and Grattan, K. T. V. (1992) A novel adaptation of the Michelson interferometer for the measurement of vibration. J. Lightwave Tech., 10, 700–3.ADSCrossRefGoogle Scholar
  35. 35.
    Walsh, D. and Culshaw, B. (1992) Novel passive compensated technique applied to a white-light interferometric system. 8th optical Fibre Sensor Conf. IEE No. 926H3107–0, Monterey, 221–4.Google Scholar
  36. 36.
    Chen, S. and Giles, I. P. (1991) Quasi-distributed pressure sensor using intensity-type optical coherence domain polarimetry. Opt. Lett., 16, 342–4.ADSCrossRefGoogle Scholar
  37. 37.
    Katrotsios, G. and Parriaux (1989) Optical Fibre Sensors. Editors Arditty, H. J., Dakin, J. P. and Kersten, R. T. L., Springer Proc. in Physics, 44, 568–74.Google Scholar
  38. 38.
    Chen, S. and Giles, I. P. (1990) Optical coherence domain polarimetry: intensity and interferometric type for quasi-distributed optical fibre sensors. SPIE 1370, Fibre Optic Smart Structures and Skins, 111, 217–25.CrossRefGoogle Scholar
  39. 39.
    Chen, S., Meggitt, B. T. and Rogers, A. J. (1990) Novel electronic escanner for coherence multiplexing in a quasi-distributed pressure sensor. Elect. Lett., 26, 1367–69.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

There are no affiliations available

Personalised recommendations