Optical Fiber Modulation Techniques for Single Mode Fiber Sensors



In order to be able to implement the signal processing techniques required for single mode fiber sensors, a means is required of measuring changes in one or more of the parameters describing the optical beam: amplitude, phase, direction and frequency of the light wave. Temporal modulation of one, or more, of these parameters enables information to be encoded onto or extracted from the optical wave. For example, optical communication systems often use amplitude modulation of the light to encode information combined with modulation of the optical frequency to enable multiplexing and demultiplexing of a number of different signals. In single mode fiber optic sensor systems we are generally using interferometry to transduce very high frequency electric field oscillations (1014– 1015 Hz in the visible) to intensity modulations. Measurands then induce a change in the optical phase, frequency or polarization state of the beam. Optical fiber modulation techniques are therefore required to either encode information or extract information from the fiber guided beam.


Optical Fiber Acoustic Wave Frequency Shifter Surface Acoustic Wave Ring Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ford, H. D. and Tatam, R. P. (1993) Narrow band wavelength division multiplexers using birefringent optical fibre. Optics Comm., 98, 151–8.ADSCrossRefGoogle Scholar
  2. 2.
    White, B. J., Davis, J. P., Bobb, C., Kruniboltz, H. D. and Larson, D. C. (1987) Optical fiber thermal modulator. J. Lightwave. Technol., LT-5, 1169.Google Scholar
  3. 3.
    Neumann, E.G. (1988) Single-Mode Fibres. Fundamentals, Springer-Verlag, Berlin.Google Scholar
  4. 4.
    Hocker, G. B. (1979) Fiber-optic sensing of pressure and temperature. Appl. Optics, 18, 1445–8.ADSCrossRefGoogle Scholar
  5. 5.
    Akhaven Leilabady, P., Jones, J. D. C. and Jackson, D.A (1985) Interferometric strain measurement using optical fibres. Proc. SPIE, 486, 230.Google Scholar
  6. 6.
    Butter, C. B. and Hocker, G. B. (1978) Fibre optics strain gauge. Appl. Optics, 18, 2867.ADSCrossRefGoogle Scholar
  7. 7.
    Davies, D. E. N. and Kingsley, S. A. (1974) Method of phase-modulating signals in optical fibres: application to optical-telemetry systems. Electron. Lett., 10, 21–2.CrossRefGoogle Scholar
  8. 8.
    Kingsley, S. A. (1975) Optical-fiber phase modulator. Electron. Lett., 11, 453–4.CrossRefGoogle Scholar
  9. 9.
    Jackson, D. A., Priest, R., Dandridge, A. and Tveten, A. B. (1980) Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber. Appl. Optics, 19, 2926–9.ADSCrossRefGoogle Scholar
  10. 10.
    Yariv, A. and Yeh, P. (1984) Optical Waves in Crystals, John Wiley, Chichester.Google Scholar
  11. 11.
    Nye, J. F. (1960) Physical Properties of Crystals, Clarendon Press, Oxford.Google Scholar
  12. 12.
    Digonnet, M. J. F. and Kim, B. Y. (1989) Fiber optic components, in Optical Fiber Sensors (eds. B Culshaw and J. Dakin ), Artech House, Chapter 7.Google Scholar
  13. 13.
    Martini, G. (1987) Analysis of a single-mode optical fibre piezoceramic phase modulator. Opt. Quant. Electron., 19, 179–90.CrossRefGoogle Scholar
  14. 14.
    Dakin, J. P., Wade, C. A. and Haji-Michael, C. (1985) A fibre optic serrodync frequency translator based on a piezoelectrically-strained fibre phase shifter. IEE Proc., 132, Pt J, 287–90.Google Scholar
  15. 15.
    Nosu, K., Taylor, H. F., Rashleigh, S. C. and Weller, J. F. (1983) Acousto-optic phase modulator for single-mode fibres. Electron. Lett., 19, 605–7.ADSCrossRefGoogle Scholar
  16. 16.
    Donalds, L.J, French, W.G, Mitchell, W.C., et al. (1982) Electric field sensitive optical fiber using piezoelectric polymer coating. Electron. Lett., 18 327–328CrossRefGoogle Scholar
  17. 17.
    Godil, A. A., Pattersorn, D. B., Heffner, B. L. et al. (1988) All-fiber acoustic optic phase modulators using zinc oxide films on glass Fiber. J. Lightwave Technol., 6, 1586–90.ADSCrossRefGoogle Scholar
  18. 18.
    Ky, N. H, Limberger, H. G, Salathe, R. P and Fox, G. R. (1996) Optical Performance of miniature all-fiber phase modulators with ZnO coating. JLightwave Technol., 14, 23–26.Google Scholar
  19. 19.
    Fox, G. R, Muller, C. A. P, Setter, N. et al. (1996) Sputter deposited piezoelectric fiber coatings for acousto-optic modulators. J. Vac. Sci. Technol., A 14, 800–805Google Scholar
  20. 20.
    Koch, M. H, Janos, M., Lamb, R. N. et al. (1998) All-fiber acousto-optic phase modulators using chemical vapor deposition zinc oxide films. J. Lightwave Technol, 16, 472–476.ADSCrossRefGoogle Scholar
  21. 21.
    Damjanovic, D., Dana, P. A., Setter, N. et al. (1995) Materials for Smart Systems. Materials Research Society,Pittsburgh (Eds. George, E. P., Takahashi, S., Trolier - McKinstry, S. et al) Google Scholar
  22. 22.
    Imai, M., Satoh, S., Sakaguchi, T. et al. (1994) 100MHz–Bandwidth response of a fiber phase modulator with thin piezoelectric jacket. IEEE Photon. Technol. Lett., 6, 956–9Google Scholar
  23. 23.
    Jackson, D. A. and Bedborough, D. S. (1977) A digital electronic system for use in interferometry. J. Phys. E: Sci. Intstrum., 11, 1121.ADSCrossRefGoogle Scholar
  24. 24.
    Cheng, Y. Y. and Wyant, J. C. (1985) Phase shifter calibration in phase-shifting interferometry. Appl. Optics, 24, 3049–52.ADSCrossRefGoogle Scholar
  25. 25.
    Czaplak, D. S., Rashleigh, S. C., Taylor H. F. and Weller, J. F. (1986) Microbend fiber-optic phase shifter. J. Lightwave Technol., LT-4, 50–4.Google Scholar
  26. 26.
    Zervas, M. N. and Giles, I. P. (1988) Optical-fiber phase modulator with enhanced modulation efficiency. Optics Lett., 13, 404–6.Google Scholar
  27. 27.
    Rashleigh, S. C. (1983) Origins and control of polarization effects, in single-mode fibers. J. Lightwave Technol., LT-1, 312–31.Google Scholar
  28. 28.
    Birch, R. D., Payne, D. N. and Varnham, M. P. (1982) Fabrication of polarisation maintaining fibre using gas phase etching. Electron. Lett., 18, 1036.CrossRefGoogle Scholar
  29. 29.
    Payne, D. N., Barlow, A. J. and Ramskov-Hansen, J. J. (1982) Development of low-and high-birefringence optical fibres. J. Quant. Electron. Lett., QE-18, 477–87.Google Scholar
  30. 30.
    Birch, R. D. (1987) Fabrication and characterisation of circularly birefringent helical fibres. Electron. Lett., 23, 150.CrossRefGoogle Scholar
  31. 31.
    Li, L., Quan, J. R. and Payne, D. N. (1986) Current sensors using highly birefringent bow-tie fibers. Electron. Lett., 22, 1142.CrossRefGoogle Scholar
  32. 32.
    Okoshi, T. (1985) Polarisation state control schemes for heterodyne or homodyne optical fiber communications. J. Lightwave Technol., LT-3, 1232–7.Google Scholar
  33. 33.
    Walker, N. G. and Walker, G. R. (1990) Polarisation control for coherent communications. J. Lightwave Technol., 8, 438–58.Google Scholar
  34. 34.
    Ulrich, R. and Johnson, M. (1979) Single-mode fiber optical polarisation rotator. Appl. Optics, 18, 1857–61.ADSCrossRefGoogle Scholar
  35. 35.
    Lefevre, H. C. (1980) Single-mode fibre fractional wave devices and polarisation controllers. Electron. Lett., 16, 778–80.ADSCrossRefGoogle Scholar
  36. 36.
    Okoshi, T., Fukaya, N. and Kikuchi, K. (1985) New polarisation control device: Rotatable fibre cranks. Electron. Lett., 21, 895–6.CrossRefGoogle Scholar
  37. 37.
    Matsumoto, T. and Kano, H. (1986) Endlessly rotatable fractional wave devices and polarisation controllers. Electron. Lett., 22, 895–6.Google Scholar
  38. 38.
    Johnson, M. (1979) In-line fibre optical polarisation transformer. Appl. Optics. 18, 1288–9.ADSCrossRefGoogle Scholar
  39. 39.
    Kidoh, Y., Suematsu, Y. and Furuya, K. (1981) Polarisation control on output of single-mode optical fibres. IEEE J. Quantum Electron, QE-17, 991–4.Google Scholar
  40. 40.
    Kubota, M., Oohara, T., Furuya, K, and Suematsu, Y. (1980) Electro-optical polarisation control on single-mode fibres. Electron. Lett., 16, 573.CrossRefGoogle Scholar
  41. 41.
    Granestrand, P. and Thylen, L. (1984) Active stabilisation of polarisation on a single mode fibre. Electron. Lett., 20, 365–6.ADSCrossRefGoogle Scholar
  42. 42.
    Ulrich, R. (1979) Polarisation stabilisation on single-mode fibre. Appl. Phys. Lett., 35, 840–2.ADSCrossRefGoogle Scholar
  43. 43.
    Ulrich, R. and Simon, A. (1979) Polarization optics of twisted single-mode fibres. Appl. Optics, 18, 2241–51ADSCrossRefGoogle Scholar
  44. 44.
    Smith, A. M. (1980) Birefringence induced by bends and twists in single-mode optical fibre. Appl. Optics, 19, 2606–1 1.Google Scholar
  45. 45.
    Ulrich, R., Rashleigh, S. C. and Eickhoff, W. (1980) Bending-induced birefringence in single-mode fibres. Optics Lett., 5, 273–5.ADSCrossRefGoogle Scholar
  46. 46.
    Ren, Z. B., Robert, P. and Paratte, P. A. (1988) Temperature dependence of bend-and twist-induced birefringence fibre. Optics Lett., 13, 62.ADSCrossRefGoogle Scholar
  47. 47.
    Namihara, Y. (1985) Opto-elastic constant in single mode optical fibres. J. Lightwave Technol., LT-3, 1078–83.Google Scholar
  48. 48.
    Borrelli, N. F. and Miller, R. A. (1968) Determination of the individual strain-optic coefficients of glass by an ultrasonic technique. Appl. Optics, 7, 745.ADSCrossRefGoogle Scholar
  49. 49.
    Rashleigh, S. C. and Ulrich, R. (1980) High-birefringence in tension-coiled single mode fiber. Optics Lett., 5, 354.ADSCrossRefGoogle Scholar
  50. 50.
    Pikaar, T., van Bochore, K., van Rooyen, A. et al. (1989) Non-deterministic endless control scheme for active polarisation control. J. Lightwave Technol., 7, 1982–7.ADSCrossRefGoogle Scholar
  51. 51.
    Noe, R. (1986) Endless polarisation control experiments with three elements of Limited birefringence range. Electron. Lett., 22, 1341–3.CrossRefGoogle Scholar
  52. 52.
    Okoshi, T., Cheng, Y. H. and Kikuchi, K. (1985) New polarisation-control scheme for optical heterodyne receiver using two Faraday rotators. Electron. Lett., 21, 787–8.CrossRefGoogle Scholar
  53. 53.
    Tatam, R. P., Pannell, C. N., Jones J. D. C. And Jackson D. A. (1987) Full polarisation state control utilising linearly birefringent monomode optical fibers. J. Lightwave Technol., LT-5, 980–5.Google Scholar
  54. 54.
    Yoshida, K., Nishikawa, S., Hikiami, T. et al (1997) Polarisation modulators with polygonal fibres. Electron Lett, 33, 797–8CrossRefGoogle Scholar
  55. 55.
    Yoshida, K. and Morikawa, T. (1997) Optical Fibres with polygonal cladding, Optical Fibre Technology, 3, 273–7ADSCrossRefGoogle Scholar
  56. 56.
    Rashleigh, S. C. (1983) Polarimetric sensors: exploiting the axial stress in high birefringence fibres. IEE Conference Publication no., 221, 210–3.Google Scholar
  57. 57.
    Johnson, M. (1981) Poincare sphere representation of birefringent networks. Appl. Optics, 20, 2075–80.ADSCrossRefGoogle Scholar
  58. 58.
    Jerrard, H. G. (1954) Transmission of light through birefringent and optically active media: the Poincare sphere. J. Opt Soc Am, 44, 634–40.ADSCrossRefGoogle Scholar
  59. 59.
    Kersey, A. D., Marrone, M. J., Dandridge, A. and Tveten, A. B. (1988) Optimisation and stabilisation of visibility in interferometric fiber-optic sensors using inputpolarization control. J. Lightwave Technol., 6, 1599–609.ADSCrossRefGoogle Scholar
  60. 60.
    Pannell, C. N., Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1988) Two-dimensional fibre-optic laser velocimetry using polarisation state control. J. Phys. E: Sci. Instrum., 21, 103–7.Google Scholar
  61. 61.
    Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1986) Optical polarisation state control schemes using fibre optics or Bragg cells. J. Phys. E: Sci. Instrum., 19, 711–17.ADSCrossRefGoogle Scholar
  62. 62.
    Jones, R. C. (1941) New calculus for the treatment of optical systems. J Opt. Soc. Am., 31, 488.ADSCrossRefGoogle Scholar
  63. 63.
    Tatam, R. P., Hill, D. C., Jones, J. D. C. and Jackson, D. A. (1988) All-fiber-optic polarisation state azimuth control: application to Faraday rotation. J Lightwave Technol., 6, 1171–6.ADSCrossRefGoogle Scholar
  64. 64.
    Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1986) Optoelectronic processing schemes for the measurement of circular birefringence. Optica Acta, 33, 1519–28.ADSCrossRefGoogle Scholar
  65. 65.
    Chandler, G. I., Forman, P. R., Jihad, F. C. and Clare, K. A. (1986) Fibre optic heterodyne phase-shift measurement of plasma current. Appl. Optics, 25, 1770.ADSCrossRefGoogle Scholar
  66. 66.
    Kersey, A. D. and Jackson, D. A. (1986) Current sensing utilising heterodyne detection of the Faraday effect in single-mode optical fibre. J. Lightwave Technol., LT-4.Google Scholar
  67. 67.
    Tatam, R. P. and Jackson, D. A. (1989) Remote probe configuration for Faraday effect magnetometry. Optics Comm., 69, 60–5.Google Scholar
  68. 68.
    Chen, J. I. and Chang, S. C. (1993) Fiber Full-polarisation-state controller. Appl. Optics, 32, 298–302.Google Scholar
  69. 69.
    Ford, H. D. and Tatam, R. P. (1995) Polarisation based optical fiber wavelength filters. J. Lightwave Technol., 13, 1435–44ADSCrossRefGoogle Scholar
  70. 70.
    Barlow, A. J. and Payne, D. N. (1983) The stress-optic effect in optical fibres. IEEE J. Quantum Electron., QE-19, 834–9.Google Scholar
  71. 71.
    Landau, L. D. and Lifshitz, E. M. (1970) Theory of Elasticity, Pergamon Press, Oxford.Google Scholar
  72. 72.
    Knuhtsen, J., Ollday, E. and Buchhave, P. (1982) Fibre optic laser Doppler anemometer with Bragg frequency shift utilising polarisation-preserving single-mode fibre. J. Phys. E: Sci. Instrum., 15, 1188–91.ADSCrossRefGoogle Scholar
  73. 73.
    Lewin, A. C., Kersey, A. D. and Jackson, D. A. (1985) Non-contact surface vibration analysis using a monomode fibre optic interferometer incorporating an open air path. JPhys. E. Sci. Instrum., 18. 604.ADSCrossRefGoogle Scholar
  74. 74.
    Nosu, K., Rashleigh, S. C., Taylor, H. F. and Weller, J. F. (1983) Acousto-optic frequency shifter for single-mode fibres. Electron. Lett., 19, 816–8.ADSCrossRefGoogle Scholar
  75. 75.
    Pannell, C. N., Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1988) Monomode fiber modulators: frequency and polarisation state control. Fiber Integr. Optics, 7, 299–315.CrossRefGoogle Scholar
  76. 76.
    Risk, W. P., Youngquist, R. C., Kino, G. S. and Shaw, H. J. (1984) Acousto-optic frequency shifting in birefringent fibre. Optics Leu., 9, 309.ADSCrossRefGoogle Scholar
  77. 77.
    Risk, W. P., Kino, G. S. and Shaw, H. J. (1986) Fiber-optic frequency shifter using a surface acoustic wave incident at an oblique angle. Optics Lett., 11, 115–17.ADSCrossRefGoogle Scholar
  78. 78.
    Engan, H. E., Kim, B. Y., Blake, J. N. and Shaw, H. J. (1988) Propagation and optical interaction of guided acoustic waves in two-mode optical fibers. J. Lightwave Technol., 6, 428–36.ADSCrossRefGoogle Scholar
  79. 79.
    Youngquist, R. C., Brooks, J. L., Risk, W. P. et al. (1985) All-fibre components using periodic coupling. IEE Proc., 132 (5), 277–86.Google Scholar
  80. 80.
    Risk, W. P., Youngquist, R. C., Kino, G. S. and Shaw, H. J. (1986) Acousto-optic frequency shifting using periodic contact with a co-propagating surface acoustic wave. Optics Lett., 11, 336–8.ADSCrossRefGoogle Scholar
  81. 81.
    Greenhalgh, P. A., Foord, A. P. and Davies, P. A, (1990) Fibre optic frequency shifters. Proc. SPIE, 1314, 284–95.Google Scholar
  82. 82.
    Foord, A. P., Greenhalgh, P. A. and Davies, P. A. (1991) All-fibre frequency shifters using multiple acoustic transducers. Electron. Lett., 27, 1141–2.CrossRefGoogle Scholar
  83. 83.
    Lisboa, O. and Carrara, S. L. A. (1992) In-line acousto-optic frequency shifter in two-mode fibre. Optics Lett., 17, 154.ADSCrossRefGoogle Scholar
  84. 84.
    Lisboa, O., Blake, J. N., Oliveira, J. E. B. and Carrara, S. L. A. (1990) New configuration for an optical fiber acousto-optic frequency shifter. Proc. SPIE, 1267, 1723.Google Scholar
  85. 85.
    Pannell, C. N., Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1988) A fibre optic frequency shifter utilising travelling flexure waves in birefringent fibres, J. Inst. Electron. Radio Engrs, S8, S92–8.CrossRefGoogle Scholar
  86. 86.
    Ji, J., Uttam, D. and Culshaw, B. (1986) Acousto-optic frequency shifting in ordinary single-mode fibre. Electron. Lett., 22, 1141–2.CrossRefGoogle Scholar
  87. 87.
    Berwick, M., Pannell, C. N., Russell, P. St. J. and Jackson, D. A. (1991) Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves. Electron. Lett., 27, 713–15.ADSCrossRefGoogle Scholar
  88. 88.
    Kim, B. Y., Blake, J. N., Engan, H. E. and Shaw, H. J. (1986) All-fiber acousto-optic frequency shifter. Optics Lett., 11, 389–91.ADSCrossRefGoogle Scholar
  89. 89.
    Birks T. A., Farwell, S. G., Russell P. St. J. and Pannell C. N. (1994) Four port fiber frequency shifter with a null taper coupler. Opt. Lett., 19, 1964–66ADSCrossRefGoogle Scholar
  90. 90.
    Culverhouse, D. O., Farwell, S. G., Birks, T. A. and Russell, P. St. J. (1995) Four port fused taper acousto-optic devices using standard singlemode telecommunications fibre. Electron. Lett., 31, 1279–1280CrossRefGoogle Scholar
  91. 91.
    Mason, W. P. (1958) Physical Acoustics and the Properties of Solids, Van Nostrand, New York.Google Scholar
  92. 92.
    Liu, W. F., Russell, P. St. J. and Doug, L. (1997) Acousto-optic superlattice modulator using a fiber Bragg grating. Optics Letts., 22, 1515–17ADSCrossRefGoogle Scholar
  93. 93.
    Sabert, H., Dong, L. and Russell, P. St. J. (1992) Versatile acousto-optical flexural wave modulator, fitter and frequency shifter in dual-core fiber, Int. J. Optoelctron., 7, 189194.Google Scholar
  94. 94.
    Smith, R. G. (1972) Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Optics, 11, 2489–94.ADSCrossRefGoogle Scholar
  95. 95.
    Agrawal, G. P. (1989) Non-linear Fiber Optics, Academic Press, London.Google Scholar
  96. 96.
    Cotter, D. (1983) Stimulated Brillouin scattering in monomode optical fibre. J. Opt. Commun., 4, 10–19.Google Scholar
  97. 97.
    Tang, C. L. (1966) Saturation and spectral characteristics of the Stokes emission in the stimulated process. J. Appl. Phys., 37, 2945–55.ADSCrossRefGoogle Scholar
  98. 98.
    Cotter, D. (1982) Observation of stimulated Brillouin scattering in low loss silica fibre at 1.3µm. Electron. Lett., 18, 445–96.CrossRefGoogle Scholar
  99. 99.
    Khan, O. S. and Tatam, R. P. (1993) Fiber optic frequency shifted based on stimulated Brillouin scattering in a birefringent fiber ring resonator. Optics Comm. 103, 161–8.ADSCrossRefGoogle Scholar
  100. 100.
    Kadiwar, R. K. and Giles, I. P. (1989) Optical fibre Brillouin ring laser gyroscope. Electron. Lett., 25, 1729–30.ADSCrossRefGoogle Scholar
  101. 101.
    Labudde, P., Anliker, P. and Weber, H. P. (1980) Transmission of narrow band high power laser radiation through optical fibers. Optics Comm., 32, 385–90.ADSCrossRefGoogle Scholar
  102. 102.
    Heiman, D., Hamilton, D. S. and Hellwarth, R. W. (1979) Brillouin scattering measurements on optical glasses. Phys. Rev. B, 19, 6583–92.ADSCrossRefGoogle Scholar
  103. 103.
    Culverhouse, D. O., Farahi, F., Pannell, C. N. and Jackson, D. A. (1989) Stimulated Brillouin scattering: a means to realise a tunable microwave generator or distributed temperature sensor. Electron. Lett., 25, 915–16.CrossRefGoogle Scholar
  104. 104.
    Culverhouse, D. O., Farahi, F., Pannell, C. N. and Jackson, D. A. (1989) Potential of stimulated Brillouin scattering as a sensing mechanism for distributed temperature sensors. Electron. Lett., 25, 913–15.CrossRefGoogle Scholar
  105. 105.
    Duffy, C. J. and Tatam, R. P. (1991) Optical heterodyne carrier generation utilising stimulated Brillouin scattering in birefringent optical fibre. Electron. Lett., 27, 2004–5.ADSCrossRefGoogle Scholar
  106. 106.
    Duffy, C. J. and Tatam, R. P. (1993) An optical frequency shifter based on stimulated Brillouin scattering in birefringent optical fiber. Appl. Optics, 32, 5966–72.ADSCrossRefGoogle Scholar
  107. 107.
    Harrison, R. G., Uppal, J. S., Johnstone, A. and Moloney, J. V. (1990) Evidence of chaotic stimulated Brillouin scattering in optical fibers. Phys. Rev. Lett., 69, 167–70.ADSCrossRefGoogle Scholar
  108. 108.
    Stokes, L. F., Chodorow, M. and Shaw, H. J. (1983) Sensitive all-single-mode-fiber resonant ring interferometer. J. Lightwave Technol, LT1. 110Google Scholar
  109. 109.
    Stokes, L. F., Chodorow, M. and Shaw, H. J. (1982) All-fibre stimulated Brillouin, ring laser with submilliwatt pump threshold. Electron. Lett., 7. 509–11.Google Scholar
  110. 110.
    Bayvel, P. and Giles, I. P. (1989) Linewidth narrowing in semiconductor laser pumped all-fibre Brillouin ring laser. Electron. Lett., 25, 260–2.ADSCrossRefGoogle Scholar
  111. 111.
    Kalli, K., Culverhouse, D. O. and Jackson, D. A. (1991) Fiber frequency shifter based on generation of stimulated Brillouin scattering in high-finesse ring resonators. Optics Lett., 16, 1538–40.ADSCrossRefGoogle Scholar
  112. 112.
    Hill, K. O., Kawasaki, B. S. and Johnson, D. C. (1976) CW Brillouin laser. Appl. Phys. Lett., 28, 608–9.ADSCrossRefGoogle Scholar
  113. 113.
    Jones, R. and Wykes, C. (1983) Holographic and Speckle Interferometry, Cambridge University Press, Cambridge.Google Scholar
  114. 114.
    Atcha, H. and Tatam, R. P. (1992) Applications of fibre optic electronic speckle pattern interferometry using laser diode sources, 8th Optical Fibers Sensors Conference, Monterey, CA, 217–20.Google Scholar
  115. 115.
    Buus, J. (1991) Single Frequency Semiconductor Lasers,SPIE Optical Engineering Press, Vol. TT5, Chapter 5.Google Scholar
  116. 116.
    Risk, W. P. and Kino, G. S. (1986) Acousto-optic polarisation coupler and intensity modulator for birefringent fibre. Optics Lett., 11, 48–50.ADSCrossRefGoogle Scholar
  117. 117.
    Birks, T. A., Culverhouse, D. O., Farrell, S. G. and Russell, P. St. J. (1996) 2x2 single-mode fiber routing switch. Optics Lett., 21, 722–724.Google Scholar
  118. 118.
    Culverhouse, D. O., Laming, R. I., Farwell, S. G. et al, (1997) All fiber 2 x 2 polarisation insensitive switch. IEEE Photonics Technol. Lett., 9, 455–457.ADSCrossRefGoogle Scholar
  119. 119.
    Millar, C. A., Brierley, M. C. and Mallinson, S, R. (1987) Exposed core single mode fibre channel dropping filter, using a high index overlay waveguide. Optics Lett., 12, 284.Google Scholar
  120. 120.
    Marcuse, D. (1989) Investigation of coupling between a fiber and a infinite slab,. J. Lightwave Technol., 7, 122–30.ADSCrossRefGoogle Scholar
  121. 121.
    Tien, P. K. (1971) Light waves in thin film and integrated optics. Appl. Optics, 10, 2395.ADSCrossRefGoogle Scholar
  122. 122.
    McCallion, K., Johnstone, W. and Thursby, G. (1991) An optical fiber switch using electro-optic waveguide interlays. Proc. SPIE, 1580, 263–9.ADSCrossRefGoogle Scholar
  123. 123.
    Johnstone, W., Murray, S., Thursby, G. (1991) Fibre optic modulators using active multimode waveguide overlays. Electron. Lett., 27, 894–6.CrossRefGoogle Scholar
  124. 124.
    Van Tomme, E., Van Dade, P., Baets, R. et al. (1991) Guided wave modulators and switches fabricated in electro-optic polymers. J. Appl. Phys., 69, 6273–6.ADSCrossRefGoogle Scholar
  125. 125.
    Fawcett, G., Johnstone, W., Andonovic, I. et al. (1992) In-line fibre-optic intensity modulator using electro-optic polymer. Electron. Lett., 28, 985–6.CrossRefGoogle Scholar
  126. 126.
    Wilkinson, M., Hill, J. R. and Cassidy, S. A. (1991) Optical fibre modulator using electro-optic polymer overlay. Electron. Lett., 27, 979–81.CrossRefGoogle Scholar
  127. 127.
    Chen, R. T., Sadovnik, L., Jannson, T. and Jannson, J. (1991) Single-mode polymer waveguide modulator. Appl. Phys. Lett., 58, 1–3.ADSCrossRefGoogle Scholar
  128. 128.
    Li, L., Kerr, A. and Giles, I. P. (1991) Single-mode optical fibre tunable couplers. Proc. SPIE, 1580, 205–15.ADSCrossRefGoogle Scholar
  129. 129.
    Bergh, R. A., Kotler, G. and Shaw, H. J. (1980) Single mode fiber optic directional coupler. Electron. Lett., 16, 260.ADSCrossRefGoogle Scholar
  130. 130.
    Yariv, A. (1987) An Introduction to Optical Electronics. Holt Sauders, New York.Google Scholar
  131. 131.
    Guenther, R. (1990) Modern Optics. John Wiley, New York.Google Scholar
  132. 132.
    Boyd, G. T. (1989) Application requirements for nonlinear-optical devices and the status of organic materials. J. Opt. Soc. Am, B, 6, 685–92.Google Scholar
  133. 133.
    Allen, S. and Murray, R. T. (1988) Molecular engineering and the all-optical computer Phys. Scripta, T23, 275–80.CrossRefGoogle Scholar
  134. 134.
    Allen, S. (1992) Non-linear optics, in Molecular Electronics (Ed. G. J. Ashwell ), Research Studies Press, John Wiley, Chichester.Google Scholar
  135. 135.
    Bailey, R. T., Cruickshank, F. R., Pavlides, P. et al. (1991) Organic materials for nonlinear optics; inter-relationships between molecular properties, crystal structure and optical properties. J. Phys. D: Appl. Phys., 24, 135–45.ADSCrossRefGoogle Scholar
  136. 136.
    Cross, G. H., Girling, I. R., Peterson, I. R. et al. (1987) Optically non-linear Langmuir-Blodgett films: linear electro-optic properties of monolayers. J. Opt. Soc. Am.,B, 4 962–7.Google Scholar
  137. 137.
    Ashwell, G. J., Dawnay, E. J. C., Kuczynski, A. P. and Martin, P. J. (1991) The highest observed second harmonic intensity from a multilayered Langmuir-Blodgett film structure. Proc. SPIE, 1361, 589–98ADSCrossRefGoogle Scholar
  138. 138.
    Ashwell, G. J., Hargreaves, R. C., Baldwin C. E. et al (1992) Improve second harmonic generation from Langmuir-Blodgett films of hemicyanine dyes. Nature, 357, 393–5.ADSCrossRefGoogle Scholar
  139. 139.
    Johnstone, W., Thursby, G., Moodie, D. et al. (1992) Fibre optic wavelength channel selector with high resolution. Electron. Lett., 28, 1364–5.ADSCrossRefGoogle Scholar
  140. 140.
    Charters, R.B., Kuczynski, A., Staines, S.E. et al. (1994) In-line fibre optic channel dropping filter using Langmuir-Blodgett films. Electron. Lett., 30, 594–5.ADSCrossRefGoogle Scholar
  141. 141.
    For example, Dantec Measurement Technology, Denmark,TSI Inc, USA and Polytech GmbH, Germany.Google Scholar
  142. 142.
    Lefevre, H. C. (1996) Fundamentals of the interferometer fiber optic gyroscope. Eleventh International Conference on Optical Fiber Sensors (OFS-11), 54–57Google Scholar
  143. 143.
    Fibre Pro (1999), Donan Systems Inc, KoreaGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

There are no affiliations available

Personalised recommendations