Advertisement

Fiber Optic Sensor Technology: Introduction and Overview

  • K. T. V. Grattan
  • T. Sun
Chapter

Abstract

This chapter aims to highlight some of the major developments, considered in more detail in the subsequent chapters of this series on Optical Fiber Sensor Technology, and to set the scene for a discussion of the fundamentals and principles of the subject. By definition such a chapter cannot be comprehensive but merely illustrative of some of the most significant issues for the range of devices and systems that are available, and giving a broad reference list, pointing to major achievements and areas of importance in the field.

Keywords

Fiber Laser Fiber Bragg Grating Silica Fiber Fiber Bragg Grating Sensor Bragg Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kersey, A. D. (1996) A review of recent developments in fiber optic sensor technology. Optical Fiber Technology, 2, 291–317.ADSCrossRefGoogle Scholar
  2. 2.
    Zhang, Z. Y. and Grattan, K. T. V. (1998) Survey of US patent activity in optical fiber sensors. European Workshop on Optical Fibre Sensors, SPIE 3483, 218–222.ADSCrossRefGoogle Scholar
  3. 3.
    OFS CD (1999) Collected papers of the International Conferences on Optical Fiber Sensors 1983–1997, Published by SPIE, Washington, U.S.A.Google Scholar
  4. 4.
    Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., Putnam, M. A. and Friebele, E. J. (1997) Fiber Grating Sensors. Journal of Lightwave Technology, 15, 1442–1463.ADSCrossRefGoogle Scholar
  5. 5.
    Grattan, K. T. V., Zhang, Z. Y. and Sun, T. (1998) Luminescent optical fibers in sensing, in Optical Fiber Sensor Technology, 4. Environmental and Chemical Sensing (eds. Grattan, K. T. V. and Meggitt, B. T. ). Chapman and Hall, London, 205Google Scholar
  6. 6.
    Ning, Y. N. and Grattan, K. T. V. (1998) Optical Fiber Sensor Technology, 2: Devices and Technology (eds. Grattan, K. T. V. and Meggitt, B. T.). Chapman and Hall, London, 1.Google Scholar
  7. 7.
    Meggitt, B. T. (1995) Fiber optic white-light interferometric sensors in Optical Fiber Sensor Technology (eds. Grattan, K. T. V. and Meggitt, B. T.). Chapman and Hall, London, 269–312.Google Scholar
  8. 8.
    Rao, Y. J. and Jackson, D. A. (2000) Principles of fibre-optic interferometry in Optical Fiber Sensor Technology Vol.1: Fundamentals (eds. Grattan, K. T. V. and Meggitt, B. T.). Chapman and Hall, London.Google Scholar
  9. 9.
    Lu, Y. and Pechstedt, R. (1998) A study of effects of phase modulator characteristics on interferometer system performance. European Workshop on Optical Fibre Sensors, 8–10 July 1998, Peebles, Scotland, SPIE 3483, 146.ADSCrossRefGoogle Scholar
  10. 10.
    Svelto, O. (1997) Principles of lasers. 4th edn. Plenum Publishing, New York, U.S.A.Google Scholar
  11. 11.
    Kim, B. Y. (1998) Fiber lasers for sensing. European Workshop on Optical Fibre Sensors, 8–10 July 1998, Peebles, Scotland, SPIE 3483, 12.ADSCrossRefGoogle Scholar
  12. 12.
    Stowe, D. W., Moore, D. R. and Priest, R. G. (1982) Polarization fading in fibre interferometric sensors. J. Quant. Electron.,18 1644.Google Scholar
  13. 13.
    Pistoni, N. C. and Martinelli, M. (1990) Birefringence effects suppression in optical fiber sensor circuits. Proc. 7th Int. Conf. On Optical Fiber Sensors, 125.Google Scholar
  14. 14.
    Kersey, A. D., Marrone, M. and Davis, M. A. (1991) Polarization-insensitive fiber optic Michelson interferometer. Electron. Lett., 26, 518.ADSCrossRefGoogle Scholar
  15. 15.
    Chen, S., Palmer, A. W., Grattan, K. T. V. and Meggitt, B. T (1992) Extrinsic optical fiber interferometric sensor that uses multimode optical fibers: System and sensing head design for low-noise operation. Opt. Lett., 17, 701.ADSCrossRefGoogle Scholar
  16. 16.
    Wang, D. N., Ning, Y. N., Grattan, K. T. V., Palmer, A. W. and Weir, K. (1993) Characteristics of synthesized light sources for white light interferometric systems. Opt. Lett., 18, 1884.ADSCrossRefGoogle Scholar
  17. 17.
    Chen, S., Grattan, K. T. V., Meggitt, B. T. and Palmer, A. W. (1993) Instantaneous fringe order identification using dual broad-band sources with widely spaced wavelengths. Electron. Lett., 29, 334.CrossRefGoogle Scholar
  18. 18.
    Gusmeroli, V. et al (1994) Absolute and simultaneous strain and temperature measurements by a coherent optical fiber sensor. Proc. OFS-10, Glasgow, 199.Google Scholar
  19. 19.
    Flavin, D. A., Mcbride, R. and Jones, J. D. C. (1995) Interferometric fiber optic sensing based on the modulation of group delay and first order dispersion: Application to strain-temperature measurand, IEEE J. Lightwave Technol., 13, 1314.ADSCrossRefGoogle Scholar
  20. 20.
    Vengsarkar, A. M., Michie, W. C., Jankovic, L., Culshaw, B. and Claus, R. O. (1994) Fiber-optic dual-technique sensor for simultaneous measurement of strain and temperature, J. Lightwave Technol., 12, 170.ADSCrossRefGoogle Scholar
  21. 21.
    Sun, T. (1999) Fluorescence-based fibre optic sensor systems for temperature and strain measurement. Ph.D. Thesis, City University, London, Chapter 1, 27–94.Google Scholar
  22. 22.
    Vali, V. and Shorthill, R. W. (1976) Fiber ring interferometers. Appl. Optics, 15, 1009.CrossRefGoogle Scholar
  23. 23.
    Lefèvre, H. (1993) The Fiber Optic Gyroscope. Artec House, Norwood, MA, U.S.A.Google Scholar
  24. 24.
    Lee, C. E. and Taylor, H. F. (1988) Interferometric optical fiber sensors using internal mirrors, Electron. Lett., 24, 193.Google Scholar
  25. 25. Murphy, K. A. (1992) Extrinsic Fabry-Perot optical fiber sensor in Proc. OFS-8Monterey, CA, 193.Google Scholar
  26. 26.
    Bhatia et al (1994) Applications of absolute fiber optic sensors to smart materials and structures in Proc. OFS-10, Glasgow, 171.Google Scholar
  27. 27.
    Sirkis, J., Berkoff, T. A., Jones, R. T., Singh, H., Kersey, A. D., Friebele, E. J. and Putnam, M. A. (1995) In-line fiber etalon (ILFE) fiber optic strain sensors. IEEE J. Lightwave Technol., 13, 1256.ADSCrossRefGoogle Scholar
  28. 28.
    Liu, T., Wu, M., Rao, Y., Jackson, D. A. and Fernando, G. F. (1998) A multiplexed optical fibre-based extrinsic Fabry-Perot sensor system for in-situ strain monitoring in composites. Smart Materials and Structures, 7, 550–556.CrossRefGoogle Scholar
  29. 29.
    Dandridge, A., Tveten, A. B., Kersey, A. D. and Yurek, A. M. (1987) Multiplexing of interferometric sensors using phase carrier techniques. J. Lightwave Technol., 5, 947.ADSCrossRefGoogle Scholar
  30. 30.
    Dandridge, A. (1990) AOTA tow test results. Proc. AFCEA/DoD Conf. On Fiber Optics’90, McLean, 104.Google Scholar
  31. 31.
    Kersey, A. D., Dandridge, A. and Tveten, A. (1987) Time-division multiplexing of interferometric fiber sensors using passive phase-generated carrier interrogation. Opt. Lett., 12, 775.ADSCrossRefGoogle Scholar
  32. 32.
    Brooks, J. L., Moslehi, B., Kim, B. Y. and Shaw, H. J. (1987) Time-domain addressing of remote fiber-optic interferometric arrays. J. Lightwave Technol., 5, 1014.ADSCrossRefGoogle Scholar
  33. 33.
    Sæther, J. and Bletekjær, K. (1996) Optical amplifiers in multiplexed sensor systems-theoretical predictions of noise performance. Proc. 11th Optical Fiber Sensors Conference, Sapporo, May 21–24, 1996, 518.Google Scholar
  34. 34.
    Sæther, J. and Blotekjær, K. (1997) Noise performance of multiplexed fiber-optic sensor systems with optical amplifiers. Optical Review, 4, 138.ADSCrossRefGoogle Scholar
  35. 35. Wagener, J. L., Hodgson, C. W., Digonnet, M. J. F. and Shaw, H. J. (1999) Noise figure characteristics of amplified fiber sensor arrays. J. Lightwave Technology.Google Scholar
  36. 36.
    Sæther, J. and Blotekjær, K. (1997) Optical fibers in time domain multiplexed sensor systems, Proc. 12th International Conference on Optical Fiber Sensors, Williamsburg, Virginia, October 28–31, 1997, 586.Google Scholar
  37. 37.
    Dakin, J. P. and Pratt, D. J. (1985) Temperature distribution measurement using Raman ratio thermometry. Fiber Optic and Laser Sensors, III, Proc. SPIE, 566, 249.CrossRefGoogle Scholar
  38. 38.
    Dakin, J. P. and Volanthen, M. (1999) Distributed and multiplexed fibre grating sensors in 13th International Conference on Optical Fiber Sensors, Kim, B. Y. and Hotate, K. Editors, Proceedings of SPIE Vol. 3746, 134–140.ADSGoogle Scholar
  39. 39.
    Kersey, A. D. and Dandridge, A. (1991) Demonstration of a hybrid time/wavelength division multiplexed interferometric fiber sensor array. Electron. Lett., 27, 554.ADSCrossRefGoogle Scholar
  40. 40.
    Berkoff, T. A. et al (1995) Hybrid time and wavelength division multiplexed fiber grating array in Proc. SPIE, 2444, 288.ADSCrossRefGoogle Scholar
  41. 41.
    Hartog, A. H. (1995) Distributed fiber optic sensors in Optical Fiber Sensor Technology (eds. Grattan, K. T. V. and Meggitt, B. T.), Chapman and Hall, London, 347–382.Google Scholar
  42. 42.
    Rogers, A. J., Handerek, V. A., Farhadiroushan, M., Feced, R., Parker, T. R. and Parvaneh, F. (1998) Advances in distributed optical-fibre sensing. European Workshop on Optical Fibre Sensors, 8–10 July 1998, Peebles, Scotland, 3483, 5.Google Scholar
  43. 43.
    Barnoski, M. K. and Jensen, S. M. (1976) A novel technique for investigating attenuation characteristics. Appl. Opt., 15, 2112.ADSCrossRefGoogle Scholar
  44. 44. Dakin, J. P. (1992) Distributed optical fiber sensors. Distributed and Multiplexed Fiber Optic SensorsII, Proc. SPIE 1797 76.Google Scholar
  45. 45.
    Rogers, A. J. (1980) Polarization optical time domain reflectometry. Electron. Lett., 16, 489 (1980)Google Scholar
  46. 46.
    Ross, J. N. (1982) Birefringence measurement in optical fibers by polarization optical time domain reflectometry. Appl. Opt., 21, 3489.ADSCrossRefGoogle Scholar
  47. 47.
    Rogers, A. J. (1994) High resolution frequency-derived distributed optical fiber sensing in Distributed and Multiplexed Fiber Optic Sensors, IV, Proc. SPIE, 2294, 2.Google Scholar
  48. 48.
    Hartog, A. H. (1983) A distributed temperature sensor based on a liquid-core optical fiber, IEEE J. Lightwave Technol., 1, 498.ADSCrossRefGoogle Scholar
  49. 49.
    Farries, M. C., Fermann, M. E., Laming, R. I., Poole, S. B. and Payne, D. N. (1986) Distributed temperature sensor using Nd3+-doped fiber, Electron. Lett., 22, 418.CrossRefGoogle Scholar
  50. 50.
    Farries, M. C. et al (1987) Distributed temperature sensor using Ho3+ doped fiber, Proc. Optical Fiber Sensors, Reno, NV, 170.Google Scholar
  51. 51.
    Heinzmann, P. and Hofstetter, R. (1985) Temperature dependence of PCS Fiber Characteristics, Proc. SPIE, 584, 234.Google Scholar
  52. 52. Oscroft, G. (1987) Intrinsic fiber optic sensors. J. Opt. Sensors2 269.Google Scholar
  53. 53. Shatalin, S. V., Treschikov, V. N. and Rogers, A. J. (1998) Interferometric optical time-domain reflectometry for distributed optical-fiber sensing. Appl. Opt.37 5600.Google Scholar
  54. 54.
    Dakin, J. P. et al (1985) Distributed anti-Stokes ratio thermometry. Proc. OFS-3, San Diego, postdeadline presentation.Google Scholar
  55. 55.
    Dakin, J. P. and Pratt, D. J. (1985) Temperature distribution measurement using Raman ratio thermometry. Fiber Optic and Laser Sensors, III, Proc. SPIE, 566, 249.CrossRefGoogle Scholar
  56. 56.
    Dakin, J. P., Pratt, D. J., Bibby, G. W. and Ross, J. N. (1985) Distributed optical fiber Raman temperature sensor using a semiconductor light source and detector. Electron. Lett., 21, 569.CrossRefGoogle Scholar
  57. 57.
    Stierlin, R., Ricka, J., Zysset, B., Battig, R., Weber, H. P., Binkert, T. and Borer, W. (1987) Distributed fiber optic temperature sensor using single photon detection. Appl. Opt., 26, 1368.ADSCrossRefGoogle Scholar
  58. 58. Thomcraft, D. A. et al (1992) An ultra high resolution distributed temperature sensor Proc. OFS-8Monterey, U.S.A., 258.Google Scholar
  59. 59.
    Faced, R, Farhadiroushan, M., Handerek, V. A. and Rogers, A. J. (1997) A high spatial resolution distributed optical fiber sensor for high-temperature measurements. Rev. Sci. Instrum., 68, 3772.ADSCrossRefGoogle Scholar
  60. 60.
    Jensen, F. B. H., Takada, E., Nakazawa, M., Katuta, T. and Yamamoto, S. (1998) Consequences of radiation effects on pure-silica-core optical fibers used for Ramanscattering-based temperature measurements. IEEE Transactions on Nuclear Science, 45, 50.ADSCrossRefGoogle Scholar
  61. 61.
    Bo, Z. (1998) The distributed temperature sensor (DTS) based on correlation technology. European Workshop on Optical Fibre Sensors, 8–10 July 1998, Peebles, Scotland, 3483, 142.Google Scholar
  62. 62.
    Horiguchi, T., Kurashima, T. and Tateda, M. (1989) Tensile strain dependence of Brillouin frequency shift in silica optical fibres. IEEE Photon. Technol. Lett., 1, 107.ADSCrossRefGoogle Scholar
  63. 63.
    Horiguchi, T., Shimizu, K., Kurashima, T., Tateda, M. and Koyamada, Y. (1995) Development of a distributed sensing technique using Brillouin scattering. J. Lightwave Technol., 13, 1296.ADSCrossRefGoogle Scholar
  64. 64.
    Culverhouse, D., Farahi, F., Pannel, C. N. and Jackson, D. A. (1989) Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors. Electron. Lett., 25, 913.CrossRefGoogle Scholar
  65. 65.
    Fellay, A., Thévenaz, L., Facchini, M., Niklès, M. and Robert, P. (1997) Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution. Proc. 12th International Conference on Optical Fiber Sensors, Williamsburg, Virginia, October 2831, 1997, 324.Google Scholar
  66. 66.
    Bao, X., Webb, D. J. and Jackson, D. A. (1994) Combined distributed temperature and strain sensor based on Brillouin loss in an optical fibre. Opt. Lett., 16, 141.ADSCrossRefGoogle Scholar
  67. 67.
    Rao, Y. J., Fisher, N., Henderson, P., Lecouche, V., Pannell,. C. N., Webb, D. J. and Jackson, D. A. (1998) Recent developments in fibre optic sensors for point and distributed sensing in large structures. European Workshop on Optical Fibre Sensors, 810 July 1998, Peebles, Scotland, 3483, 138.Google Scholar
  68. 68.
    Parker, T. R., Farhadiroushan, M., Faced, R., Handerek, V. A. and Rogers, A. J. (1998) Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers. IEEE Journal of Quantum Electronics, 34, 645.ADSCrossRefGoogle Scholar
  69. 69.
    Wait, P. C. and Newson, T. P. (1996) Laudau-Placzek ratio applied to distributed fiber sensing. Opt. Commun., 122, 141.ADSCrossRefGoogle Scholar
  70. 70.
    Lees, G. P., Wait, P. C., Cole, M. J. and Newson, T. P. (1998) Advances in optical fiber distributed temperature sensing using the Laudau-Placzek ratio. IEEE Photonics Technology Letters, 10, 126.ADSCrossRefGoogle Scholar
  71. 71.
    NTT Access Network Systems Laboratories (1997) Distributed sensing techniques using Brillouin scattering. Proc. 12th International Conference on Optical Fiber Sensors, Williamsburg, Virginia, October 28–31, 1997, 316.Google Scholar
  72. 72.
    Faced, R., Parker, T. R., Farhadiroushan, M. M., Handerek, V. A. and Roger, A. J. (1998) Power measurement of noise initiated Brillouin scattering in optical fibres for sensing applications. Opt. Leu., 23, 79.ADSCrossRefGoogle Scholar
  73. 73.
    Wait, P. C., Souza, K. D. and Newson, T. P. (1997) A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors. Opt. Commun., 144, 17.ADSCrossRefGoogle Scholar
  74. 74.
    Parvaneh, F., Handerek, V. A. and Rogers, A. J. (1992) Frequency-derived remote measurement of birefringence in polarization maintaining fibre by using the optical Kerr effect. Opt. Lett., 17, 1346.ADSCrossRefGoogle Scholar
  75. 75.
    Hill, K. O., Fujii, Y., Johnson, D. C. and Kawasaki, B. S. (1978) Photosensitivity in optical fiber waveguide: Application to reflection filter fabrication. Appl. Phys. Lett., 32, 647.ADSCrossRefGoogle Scholar
  76. 76.
    Meltz, G., Morey, W. W. and Glenn, W. H. (1989) Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Leu., 14, 823.ADSCrossRefGoogle Scholar
  77. 77.
    Stone, J. (1987) Photorefractivity in GeO2-doped silica fibers. J. Appl. Phys., 62, 4371.ADSCrossRefGoogle Scholar
  78. 78.
    Payne, F. P. (1989) Photorefractive gratings in single-mode optical fibers. Electron. Lett., 25, 498.Google Scholar
  79. 79.
    Kashyap, R. (1994) Photosensitive optical fibers: Devices and applications. Optic. Fiber Technol., 1, 17.ADSCrossRefGoogle Scholar
  80. 80.
    Othonos, A. (1997) Fiber Bragg gratings. Rev. Sci. Instrum., 68, 4309.ADSCrossRefGoogle Scholar
  81. 81.
    Rao, Y. J. (1997) In-fibre Bragg grating sensors. Meas. Sci. Technol., 8, 355–375ADSCrossRefGoogle Scholar
  82. 82.
    Morey, W. W., Meltz, G. and Glenn, W. H. (1989) Fiber Bragg grating sensors. Proc. SPIE Fiber Optic and Laser Sensors VII, 1169, 98.Google Scholar
  83. 83.
    Morey, W. W., Dunphy, J. R. and Meltz, G. (1991) Multiplexing fiber Bragg grating sensors. Proc. SPIE Distributed and Multiplexed Fiber Optic Sensors, Boston, MA, 1991, 1586, 216.Google Scholar
  84. 84.
    Handerek, V. A. (1998) Fiber gratings: principles, fabrication and properties. Optical Fiber Sensor Technology Vol 2, Eds. Grattan, K. T. V. and Meggitt, B. T., Chapman and Hall, London, 329Google Scholar
  85. 85.
    Rao, Y. J. (1998) Fiber Bragg grating sensors: principles and applications. Optical Fiber Sensor Technology Vol 2, Eds. Grattan, K. T. V. and Meggitt, B. T., Chapman and Hall, London, 355Google Scholar
  86. 86.
    Ning, Y. N. and Meggitt, B. T. (1998) Fiber Bragg grating sensors: signal processing aspects, in Optical Fiber Sensor Technology Vol. 2: Devices and Technology, Chapman and Hall, London, 419.Google Scholar
  87. 87.
    Melle, S. M., Liu, M. and Measures, R. M. (1992) A passive wavelength demodulation system for guided-wave Bragg grating sensors. IEEE Photon. Technol. Lett., 4, 516.ADSCrossRefGoogle Scholar
  88. 88.
    Davis, M. A. and Kersey, A. D. (1994) All fiber Bragg grating strain sensor demodulation technique using a wavelength division coupler. Electron. Lett., 30, 75.CrossRefGoogle Scholar
  89. 89.
    Zhang, Q., Brown, D. A., Kuang, H., Townsend, J. E., Chen, M., Reinhart, L. J. and Morse, T. F. (1995) Use of highly overcoupled couplers to detect shifts in Bragg wavelength. Electron. Lett., 31, 480.CrossRefGoogle Scholar
  90. 90.
    Riberio, A. B. L., Ferreira, L. A., Tsvetkov, M. and Santos, J. L. (1996) All fiber interrogation technique for fiber Bragg grating sensors using a biconical fiber filter. Electron. Lett., 32, 382.CrossRefGoogle Scholar
  91. 91.
    Davis, M. A. Bellemore, D. G. and Kersey, A. D. (1995) Design and performance of a fiber Bragg grating distributed strain sensor system. Proc. SPIE, North American Conf. Smart Structures Materials, San Diego, CA, 1995, 2446, 227.Google Scholar
  92. 92.
    Xu, M. G., Geiger, H., Archambault, J. L., Reekie, L. and Dakin, J. P. (1993) Novel interrogation system for fiber Bragg grating sensors using an acousto-optic tunable filter. Electron. Lett., 29, 1510.CrossRefGoogle Scholar
  93. 93.
    Dunphy, J. R. et al (1993) Instrumentation development in support of fiber grating sensor arrays. Proc. SPIE, Distributed and Multiplexed Fiber Optic Sensors, Boston, MA, 1993, 2071, 2.Google Scholar
  94. 94.
    Jackson, D. A., Ribeiro, A. B. L., Reekie, L. and Archambault, J. L. (1993) Simple multiplexing scheme for a fiber optic grating sensor network. Opt. Lett., 18, 1192.ADSCrossRefGoogle Scholar
  95. 95.
    Davis, M. A. and Kersey, A. D. (1995) Matched-filter interrogation technique for fiber Bragg grating arrays. Electron. Lett., 31, 822.ADSCrossRefGoogle Scholar
  96. 96.
    Kersey, A. D., Berkoff, T. A. and Morey, W. W. (1992) High resolution fiber Brgg grating based strain sensor with interferometric wavelength shift detection. Electron. Lett., 28, 236.ADSCrossRefGoogle Scholar
  97. 97.
    Kersey, A. D. and Berkoff, T. A. (1993) Fiber optic Bragg grating differential temperature sensor. IEEE Photon. Technol. Lett., 4, 1183.ADSCrossRefGoogle Scholar
  98. 98.
    Lissak, B., Arie, A. and Tur, M. (1998) High resolution strain sensing by locking lasers to fiber-Bragg gratings. European Workshop on Optical Fibre Sensors, 8–10 July 1998, Peebles, Scotland, 3483, 250.Google Scholar
  99. 99.
    Byron, K. C., Sugden, K., Bricheno, T. and Bennion, I. (1993) Fabrication of chirped Bragg gratings in photosensitive fiber. Electron. Lett., 29, 1659.CrossRefGoogle Scholar
  100. 100.
    Hill, P. C. and Eggleton, B. J. (1994) Strain gradient chirp of fiber Bragg gratings. Electron. Lett., 30, 1172.CrossRefGoogle Scholar
  101. 101.
    Putnam, M. A., Williams, G. M., Friebele, E. J. (1995) Fabrication of tapered, strain-gradient chirped fiber Bragg gratings. Electron. Lett., 31, 309.CrossRefGoogle Scholar
  102. 102.
    Kersey, A. D., Davis, M. A. and Tsai, T. (1996) Fiber optic Bragg grating strain sensor with direct reflectometric interrogation. Proc. 11th Int. Conf. Optical Fiber Sensors, OFS’96, Sapporo, Japan, May 1996, 634.Google Scholar
  103. 103.
    LeBlanc, M., Huang, S., Ohn, M., Measures, R. M., Guemes, A. and Othonos, A. (1996) Distributed strain measurement based on a chirped fiber Bragg grating and reflection spectrum analysis. Opt. Lett., 21, 1045.CrossRefGoogle Scholar
  104. 104.
    Huang, S., Ohn, M. M. and Measures, R. M. (1995) A novel Bragg grating distributed-strain sensor based on phase measurements. Proc. SPIE Smart Sensing, Processing and Instrumentation, 1995, SPIE 2444, 158.ADSCrossRefGoogle Scholar
  105. 105.
    Huang, S., Olm, M. M., LeBlanc, M. and Measures, R. M. (1997) Continuous arbitrary strain profile measurements with fiber Bragg gratings, Smart Materials and Structures, 7, 248–256.CrossRefGoogle Scholar
  106. 106.
    Huang, S., Ohn, M. M. and Measures, R. M. (1996) Phase-based Bragg intra-grating distributed strain sensor. Appl. Opt., 35, 1135.ADSCrossRefGoogle Scholar
  107. 107.
    Tang, Y., Peng, T., Lee, S. M., Sirkis, J. S., Childers, B. A., Moore, J. P. and Melvin, L. D. (1999) Characterization of fiber Bragg grating (FBG) based Palladium tube hydrogen sensors in 13th International Conference on Optical Fiber Sensors, Kim, B. Y. and Hotate, K., Editors, Proc. SPIE Vol.3746, 175–182.Google Scholar
  108. 108.
    Langford, N. (1998) Optical fibre lasers, in Optical Fiber Sensor Technology, 2. Devices and Technology (eds. K.T.V.Grattan and B.T.Meggitt ). Chapman and Hall, London, 37.Google Scholar
  109. 109.
    Kim, B. Y. (1998) Fiber lasers in optical sensors, in Optical Fiber Sensor Technology, 2. Devices and Technology (eds. K.T.V.Grattan and B.T.Meggitt ). Chapman and Hall, London, 99Google Scholar
  110. 110.
    Ball, G. A., Morey, W. W. and Cheo, P. K. (1993) Singlepoint and multipoint fiber laser sensors. IEEE Photon. Technol. Lett., 5, 267.ADSCrossRefGoogle Scholar
  111. 111.
    Ball, G. A., Meltz, G. and Morey, W. W. (1993) Polarimetric heterodyning Bragg grating fiber laser sensor. Opt. Len., 18, 1976.ADSCrossRefGoogle Scholar
  112. 112.
    Kersey, A. D. and Morey, W. W. (1993) Multi-element Bragg grating based fiber laser strain sensor. Electron. Lett., 29, 964.ADSCrossRefGoogle Scholar
  113. 113.
    Alavie, A. T., Kan, S. E., Othonos, A. and Measures, R. M. (1993) A multiplexed Bragg grating fiber laser system. IEEE Photon. Technol. Lett., 5, 1112.ADSCrossRefGoogle Scholar
  114. 114.
    Koo, K. P. and Kersey, A. D. (1995) Bragg grating based laser sensor systems with interferometric interrogation and wavelength division multiplexing. J. Lightwave Technol., 13, 1243.ADSCrossRefGoogle Scholar
  115. 115.
    Lee, B. W., Jeong, H. J. and Kim, B. Y. (1997) High-sensitivity mode-locked fiber laser gyroscope. Opt. Lett., 22, 129.ADSCrossRefGoogle Scholar
  116. 116.
    Lee, M. L., Park, J. S., Lee, W. J., Yun, S. H., Lee, Y. H. and Kim, B. Y. (1998) A polarimetric current sensor using orthogonally-polarized dual-frequency fiber laser. Meas. Sci. and Technol., 9, 952.ADSCrossRefGoogle Scholar
  117. 117.
    Kim, B. Y. (1998) Fiber lasers for sensing. European Workshop on Optical Fibre Sensors, 8–10 July 1998, Peebles, Scotland, 3483, 12.Google Scholar
  118. 118.
    Dakin, J. P., Foufelle, V., Russell, S. J. and Hadeler, O. (1999) Sensor network for structural strain and high hydraulic pressure, using optical fiber grating pairs, interrogated in the coherence domain, in 13th International Conference on Optical Fiber Sensors,Kim, B. Y. and Hotate, K., Editors, Proceedings of SPIE Vol.3746 157–160.Google Scholar
  119. 119.
    Kersey, A. D. et al (1988) Analysis of intrinsic crosstalk in tapped serial and Fabry-Perot interferometric fiber sensor arrays. Proc. SPIE Fiber Optic Laser Sensors. 985, 113.CrossRefGoogle Scholar
  120. 120.
    Morey, W. W. (1990) Distributed fiber grating sensors. Proc. OFS’90, Sydney, Australia, 285.Google Scholar
  121. 121.
    Vohra, S., Dandridge, A., Danver, B. and Tveten, A. (1996) An hybrid WDM/TDM reflecometric array. Proc. 11th Int. Conf. Optic. Fiber Sensors. OFS’96, Sapporo, Japan, 534.Google Scholar
  122. 122.
    Kersey, A. D. and Marrone, M. J. (1996) Nested interferometric sensors utilizing fiber Bragg grating reflectors. Proc. 11th Int. Conf. Optic. Fiber Sensors. OFS’96, Sapporo, Japan, 618.Google Scholar
  123. 123.
    Kersey, A. D. and Davis, M. A. (1994) Interferometric fiber sensor with a chirped Bragg grating sensing element. Proc. OFS’10, Glasgow, Scotland, 319.Google Scholar
  124. 124.
    Vengsarkar, A. M., Lemaire, P. J., Judkins, J. B., Bhatia, V., Erdogan, T. and Sipe, J. E. (1995) Long period fiber gratings as band-rejection filters. Tech. Dig. Conf. Opt. Fiber Commun., San Diego, CA, 1995, postdeadline paper PD4–2.Google Scholar
  125. 125.
    Vengsarkar, A. M., Lemaire, P. J., Judkins, J. B., Bhatia, V., Erdogan, T. and Sipe, J. E. (1996) Long-period fiber gratings as band-rejection filters. J. Lightwave Technol., 14, 58–64.ADSCrossRefGoogle Scholar
  126. 126.
    Bhatia, V. and Vengsarkar, A. M. (1996) Optical fiber long-period grating sensors. Opt. Lett., 21, 692–694.ADSCrossRefGoogle Scholar
  127. 127.
    Patrick, H. J., Williams, G. M., Kersey, A. D., Pedrazzani, J. R. and Vengsarkar, A. M. (1996) Hybrid fiber Bragg grating/long period grating sensor for strain/temperature discrimination. IEEE Photon. Technol. Lett., 8, 1223–1225.ADSCrossRefGoogle Scholar
  128. 128.
    Bhatia, V., Campbell, D. K., Alberto, T. D., Eyck, C. A. T., Sherr, D., Murphy, K. A. and Claus, R. O. (1997) Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive index sensing in Tech. Dig. Conf. Opt. Fiber Commun., Dallas, TX, 346–347.Google Scholar
  129. 129.
    Snitzer, E. (1961) Optical laser action of Nd3+ in a barium crown glass, Phys. Rev. Lett., 72, 36.Google Scholar
  130. 130.
    Grattan, K. T. V., Zhang, Z. Y. and Sun, T. (1998) Luminescent optical fibers in sensing, in Optical Fiber Sensor Technology, 4. Environmental and Chemical Sensing (eds. Grattan, K. T. V. and Meggitt, B. T.). Chapman and Hall, London, 205.Google Scholar
  131. 131.
    Grattan, K. T. V. and Zhang, Z. Y. (1998) Fiber optic luminescent thermometry, in Optical Fiber Sensor Technology 4. Environmental and Chemical Sensing (eds. Grattan, K. T. V. and Meggitt, B. T. ). Chapman and Hall, London, 133.CrossRefGoogle Scholar
  132. 132.
    Grattan, K. T. V. and Zhang, Z. Y. (1995) Fiber Optic Fluorescence Thermometry, Chapman and Hall, London.Google Scholar
  133. 133.
    Rogers, A. J. (1998) Essentials of Optoelectronics, Chapman and Hall, London, 329.Google Scholar
  134. 134.
    Thévenaz, L., Facchini, M., Fellay, A. and Robert, P. (1999) Monitoring of large structures using distributed Brillouin fiber sensing. Proc. 13th Int. Optical Fiber Sensors Conf, eds., Kim, B. Y. and Hotate, K., Proc. SPIE 3746, 345.Google Scholar
  135. 135.
    York Sensors, Chandler’s Ford, Southampton, Manufacturer’s Data (1999) at website http://monty.orc.soton.ac.uk/-sensors/york.html Google Scholar
  136. 136.
    Zhang, Z. Y., Grattan, K. T. V., Palmer, A. W. and Meggitt, B. T. (1998) Spectral characteristics and effects of heat treatment on intrinsic Nd-doped fiber thermometer probes. Rev. Sci. Instrum., 69, 139.ADSCrossRefGoogle Scholar
  137. 137.
    Satoh, S. and Imai, M. (1996) Mode-locked all-fiber laser with a piezoelectric copolymer jacketed fiber for phase modulation in Proc. 11th Int. Optical Fiber Sensors Conf, 506.Google Scholar
  138. 138.
    Zhang, Z. Y., Grattan, K. T. V., Palmer, A. W., Sun, T. and Meggitt, B. T. (1997) Rare earth doped intrinsic fiber optic sensors for high temperature measurement up to 1100°C, Proc. 12th International Conference on Optical Fiber Sensors, Williamsburg, Virginia, October 28–31, 1997, 556.Google Scholar
  139. 139.
    Mazzali, C. Fraguto, H. L., Palange, E. and Dini, D. C. (1996) Fast method for obtaining erbium-doped fiber instrinsic parameters, Electron. Lett., 32, 921.Google Scholar
  140. 140.
    Maurice, E., Monnom, G. B., Dussardier, Saissy, A., Ostrowsky, D. B. and Baxter, G. (1994) Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers, Opt. Lett., 19, 990.Google Scholar
  141. 141.
    Maurice, E., Monnom, G. B., Dussardier, Saissy, A., Ostrowsky, D. B. and Baxter, G. (1995) High dynamic range temperature point sensor using green fluorescence intensity ratio in Er-doped silica fiber, IEEE J. Lightwave Technol., 13, 1349Google Scholar
  142. 142.
    Imai, Y., Hokazono, T. and Yoshida, T. (1997) Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.481.im pumping, Opt. Rev., 4, 117.CrossRefGoogle Scholar
  143. 143.
    Ko, P. K. Y., Demokan, M. S. and Tam, H. (1996) Distributed temperature sensing with erbium-doped fiber amplifiers, IEEE J. Lightwave Technol., 14, 2236.ADSCrossRefGoogle Scholar
  144. 144.
    Zhang, Z.Y., Grattan, K. T. V., Palmer, A. W., Sun, T. and Meggitt, B. T. (1997) Fluorescence decay time characteristics of erbium-doped optical fiber at elevated temperatures, Rev. Sci. Instrum., 68, 2764 (1997)Google Scholar
  145. 145.
    Zhang, Z. Y., Grattan, K. T. V., Palmer, A. W. and Meggitt,B. T. (1998) Thulium-doped intrinsic fibre optic sensor for high temperature measurements (1100°C), Rev. Sci. Instrum., 69, 3210–14.ADSCrossRefGoogle Scholar
  146. 146.
    Oh, K. and Pack, Un-C. (1997) Fiber optic absorption spectroscopic gas sensor using an amplified spontaneous emission light source from Tm3+/Ho3+ co-doped silica fiber, Proc. 12th International Conference on Optical Fiber Sensors, Williamsburg, Virginia, October 28–31, 1997, 432.Google Scholar
  147. 147.
    Wang, D. N., Meggitt, B. T., Palmer, A. W., Grattan, K. T. V. and Ning, Y. N. (1995) Use of a Sm3+-doped fiber as a low coherence light-source, IEEE Photonics Technol. Lett., 7, 620.ADSCrossRefGoogle Scholar
  148. 148.
    Ning, Y. N. and Grattan, K. T. V. (1998) White light interferometric optical fiber sensing techniques, in Optical Fiber Sensor Technology, 4. Environmental and Chemical Sensing (eds. K.T.V.Grattan and B.T.Meggitt ). Kluwer Academic Publishers, London, 271.Google Scholar
  149. 149.
    Sun, T., Zhang, Z. Y., Grattan, K. T. V. and Palmer, A. W. (1999) Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers. Rev. Sci. Instrum., 70, 1447.ADSCrossRefGoogle Scholar
  150. 150.
    Magne, S. (1993) Etude d’un laser a fiber dopee Ytterbium-spectroscopie laser de fibers dopees. Thesis, University of St-Etienne.Google Scholar
  151. 151.
    Sun, T., Zhang, Z. Y., Grattan, K. T. V. and Palmer, A. W. (1998) Quasi-distributed fluorescence-based optical fiber temperature sensor system. Rev. Sci. Instrum., 69, 146.ADSCrossRefGoogle Scholar
  152. 152.
    Digonnet, M. J. F. (1993) Rare Earth Doped Fiber Lasers and Amplifiers, Marcel Dekker, New York.Google Scholar
  153. 153.
    Boisde, G. and Harmer, A. (1996) Chemical and Biochemical Sensing with Optical Fibers and Waveguides. Artec House, Norwood, USA.Google Scholar
  154. 154.
    Flannery, D., James, S. W., Tatam, R. P. and Ashwell, G. J. (1997) Single mode fiber optic chemical sensor using Langmuir-Blodgett waveguide overlays, Proc. 12th International Conference on Optical Fiber Sensors, Williamsburg, Virginia, October 2831, 1997, 382.Google Scholar
  155. 155.
    Poulain, M., Poulain, M. and Lucas, J. (1975) Verres fluores au tetrafluorure de zirconum: Proprietes optiques d’un verre dope au Nd3+, Mater. Res. Bull., 10, 243.CrossRefGoogle Scholar
  156. 156.
    Richardson, D., Minelly, J. and Hanna, D. (1997) Fiber laser systems shine brightly, Laser Focus World, September, 87.Google Scholar
  157. 157.
    Schweitzer, T. (1997) New fiber laser glasses using gallium lanthium sulfide, Proc. CLEO’97, Paper CWQ4, Baltimore, MD, 1997Google Scholar
  158. 158.
    Baran, A. (1998) GI POF–Comparison of different technologies in Proc. 7th Int. Plastic Opt. Fiber Conf98, Berlin, Germany, 43–49.Google Scholar
  159. 159.
    Steiger, U. (1998) Sensor properties and applications of POF in Proc. 7th Int. Plastic Opt. Fiber Conf98, Berlin, Germany, 171–7.Google Scholar
  160. 160.
    Morisawa, M. and Muto, S. (1998) POF sensors for detecting oxygen in air and in water in Proc. 7th Int. Plastic Opt. Fiber Conf98, Berlin, Germany, 243–4.Google Scholar
  161. 161.
    Medlock, R. S. (1986) Review of modulating techniques for fibre optic sensors. Int. J. Opt. Sensors, 1, 43–68.Google Scholar
  162. 162.
    Nowodzinski, A., Jucker, P., Van uffelen, M. and Depres, V. (1998) OTDR for plastic optical fibres in Proc. 7th Int. Plastic Opt. Fiber Conf98, Berlin, Germany, 290–5.Google Scholar
  163. 163.
    Languesse, M. and Rebourgeard, P. (1997) Luminescent optical fibres in Plastic Optical Fibres-Practical Applications (ed. Club des Fibres Optiques). Wiley, Chichester, 127.Google Scholar
  164. 164.
    Augousti, A. T., Mason, J. and Grattan, K. T. V. (1990) A simple fiber optic level sensor using fluorescent fiber. Rev. Sci. Instrum., 61, 3854.ADSCrossRefGoogle Scholar
  165. 165.
    Muto, S., Fukasawa, A., Kamimura, M., Shinmura, F. and Ito, H. (1989) Fiber humidity sensor using fluorescent dye-doped plastics, Jpn. J. Appl. Phys., 28, 1065.ADSCrossRefGoogle Scholar
  166. 166.
    Sawada, H., Tanaka, A. and Wakatsuki, N. (1989) Plastic optical fiber doped with organic fluorescent materials, Fujitsu Sci. Technol. J., 25, 163.Google Scholar
  167. 167.
    Club des fibres Optiques (1997) Plastic Optical Fibres - Practical Applications, Wiley, Chichester U.K.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • K. T. V. Grattan
  • T. Sun

There are no affiliations available

Personalised recommendations