Optical Fiber Chemical Sensors: Fundamentals and Applications

  • J. O. W. Norris


Optical methods are some of the oldest and best established techniques for sensing chemical analytes, and have formed the basis for many chemical sensors. The development of inexpensive, high quality optical fibers for the communications industry has provided the essential component for the implementation of optical fiber sensors. There has been considerable research effort expended in developing sensors based on optical fibers for both physical and chemical analytes, with many interesting schemes having been proposed, since the late 1970s and continuing to expand since then.


Optical Fiber Chemical Sensor Evanescent Wave Optical Fiber Sensor Evanescent Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MacCraith, B. D. (1999) Optical fiber chemical sensor systems and devices in Optical Fiber Sensor Technology 4. Eds. Grattan K. T. V. and Meggitt, B. T., Kluwer Academic Publishers, London, 15–46.Google Scholar
  2. 2.
    Magill, J. (1999) Integrated optic sensors in Optical Fiber Sensor Technology 4. Eds. Grattan K. T. V. and Meggitt, B. T., Kluwer Academic Publishers, London, 113–132.Google Scholar
  3. 3.
    Chan, K., Ito, H. and Inabe, H. (1984) An optical-fibre based gas sensor for remote absorption measurement of low-level methane gas in the near-infrared region. J Lightwave Technol., LT-2, 234.Google Scholar
  4. 4.
    Hordvik, A., Berg, A. and Thingbo, D. (1983) A fibre optic gas detection system, in Proceeding 9th European Conference on Optical Communications (Geneva),p. 317.Google Scholar
  5. 5.
    Dakin, J. P., Wade C. A., Pinchbeck, D. and Wykes, J. S. (1987) A novel optical fibre methane sensor, in Proceedings Fibre Optics ‘87, London, Proc. SPIE, 734, 194.Google Scholar
  6. 6.
    Wolfbeis, O. S., Schaffar, B. P. H. and Chalmers, R. A. (1986) Fibre-optic titrations IV: Direct compleometric titration of aluminium(III) with DCTA. Talanta, 33, 867.CrossRefGoogle Scholar
  7. 7.
    Kittrel, C., Willett, R. L., de los Santos-Pancheo, C. et al (1985) Diagnosis of fibrous arterial atherosclerosis using fluorescence, Appl. Optics, 24, 2280.ADSCrossRefGoogle Scholar
  8. 8.
    Thompson, R. B. (1999) Biomedical fiber optic sensors: problems and prospects in Optical Fiber Sensor Technology 4. eds. Grattan K. T. V. and Meggitt, B. T., Kluwer Academic Publishers, London, 67.Google Scholar
  9. 9.
    Kimball-Linne, M. A., Kychakoff, G. and Hanson, R. K. (1986) Fibre-optic absorption/fluorescence combustion diagnostics. Combust. Sci. Technol., 50, 307.CrossRefGoogle Scholar
  10. 10.
    Gantner, E. and Steinert, D. (1990) Applications of laser Raman spectrometry in process control, using optical fibres. Fresenius J. Anal. Chem., 338, 2.CrossRefGoogle Scholar
  11. 11.
    Lewis, E. N., Kalasinsky, V. F. and Levin, 1. W. (1988) Near-infrared Fourier transform Raman spectroscopy using fibre-optic assemblies. Anal. Chem., 60, 2658.CrossRefGoogle Scholar
  12. 12.
    Kirkbright, G. F., Narayanaswamy, R. and Welti, N. A. (1984) Fibre-optic pH probe based on the use of an immobilised calorimetric reagent. Analyst, 109, 1025.ADSCrossRefGoogle Scholar
  13. 13.
    Jones, T. P. and Porter, M. D. (1988) Optical pH sensor based on the chemical modification of a porous polymer film. Anal. Chem., 60, 404.CrossRefGoogle Scholar
  14. 14.
    Woods, B. A., Ruzicka, J., Christian, G. D. et al (1988) Measurement of rain water pH by optosensing flow injection analysis. Analyst, 113, 301.ADSCrossRefGoogle Scholar
  15. 15.
    Peterson, J. I., Goldstein, S. R., Fitzgerald, R. V. and Buckhold, D. K. (1980) Fibre optic pH probe for physiological use. Anal. Chem., 52, 864.CrossRefGoogle Scholar
  16. 16.
    Bentley, A. E. and Alder, J. F. (1989) Optical fibre sensor for detection of hydrogen cyanide in air. Anal. Chim. Acta, 222, 63.CrossRefGoogle Scholar
  17. 17.
    Dickert, F. L., Schreiner, S. K., Mages, G. R. and Kimmel, H. (1989) Fibre optic dipping sensor for organic solvents in waste water. Anal. Chem., 61, 2306.CrossRefGoogle Scholar
  18. 18.
    Wolfbeis, O. S. and Posch, H. E. (1986) Fibre-optic fluorescing sensor for ammonia, Anal. Chim. Acta, 185, 321.CrossRefGoogle Scholar
  19. 19.
    Fuh, M.-R. S., Burgess, L. W., Hirschfeld, T. B. et al (1987) Single fibre optic fluorescence pH probe. Analyst, 112, 1159.ADSCrossRefGoogle Scholar
  20. 20.
    Gehrich, J. L., Lubbers, D. W., Optiz, N. et al (1986) Optical fluorescence and its application to an intravascular blood gas monitoring system. IEEE Trans. Biomed. Eng., BME-33, 117.Google Scholar
  21. 21.
    Kawabata, Y., Kamichika, T., Imasaka, T. and Ishibashi, N. (1989) Fibre-optic sensor for carbon dioxide with a pH indicator dispersed in a poly (ethene glycol) membrane. Anal. Chim. Acta, 219, 223.CrossRefGoogle Scholar
  22. 22.
    Peterson, J. I., Fitzgerald, R. V. and Buckhold, D. K. (1984) Fibre-optic probe for in vivo measurement of oxygen partial pressure. Anal. Chem., 56, 62.CrossRefGoogle Scholar
  23. 23.
    Opitz, N., Graf, H.-J. and Lubbers, D. W. (1988) Oxygen sensor for the temperature range 300 to 500 K based on fluorescence quenching of indicator-treated silicone rubber membranes. Sensors Actuators, 13, 159.CrossRefGoogle Scholar
  24. 24.
    Lippitsch, M. E., Pusterhofer, J., Leiner, M. J. P. and Wolfbeis, O. S. (1988) Fibreoptic oxygen sensor with the fluorescence decay time as the information carrier. Anal. Chim. Acta, 205, 1.CrossRefGoogle Scholar
  25. 25.
    Petrea, R. D., Sepaniak, M. J. and Vo-Dinh, T. (1988) Fibre-optic time-resolved fluorimetry for immunoassays. Talanta, 35, 139.CrossRefGoogle Scholar
  26. 26.
    Wolfbeis, O. S. and Schaffer, B. P. H. (1987) Optical sensors: An ion-selective optrode for potassium. Anal. Chim. Acta, 198, 1.CrossRefGoogle Scholar
  27. 27.
    Lui, B. L., and Schultz, J. S. (1986) Equilibrium binding in immunosensors. IEEE Trans. Biomed. Eng., BME-33, 133.Google Scholar
  28. 28.
    Meadows, D. and Schultz, J. S. (1988) Fibre-optic biosensors based on fluorescence energy transfer. Talanta, 35, 145.CrossRefGoogle Scholar
  29. 29.
    Roe, J. N. and Hirschfeld, T. (1988) Fibre-optic hydrogen sulphide detection. Int. J. Optoelectron., 3, 289.Google Scholar
  30. 30.
    Freeman, T. M. and Seitz, W. R. (1978) Chemilumineseence fibre optic probe for hydrogen peroxide based on the luminol reaction. Anal. Chem., 50, 1242.CrossRefGoogle Scholar
  31. Badini, G. E., Grattan, K. T. V., Palmer, A. W. and Tseung, A. C. C. (1989) Development of pH-sensitive substrates for optical sensor applications. Springer Proc. In Physics,Springer, Berlin, 44, 436.Google Scholar
  32. 32.
    Klein, L. C. (1994) Sol-gel optics. Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
  33. 33.
    Shahan, M. R. (1999) Sol-gel fiber optic chemical sensors in Optical Fiber Sensor Technology 4. eds. Grattan K. T. V. and Meggitt, B. T., Kluwer Academic Publishers, London, 47.Google Scholar
  34. 34.
    Hardy, E. E., David, D. J., Kapany, N. S. and Unterleitner, F. C. (1975) Coated optical guides for spectrophotometry of chemical reactions. Nature (London), 257, 666.ADSCrossRefGoogle Scholar
  35. 35.
    Giuliani, J. F., Wohltjen, H. and Jarvis, N. L. (1983) Reversible optical waveguide sensor for ammonia vapours. Optics Lett., 8, 54.ADSCrossRefGoogle Scholar
  36. 36.
    Dress, P., Belz, M., Klein, K. F., Grattan, K. T. V. and Franke, H. (1998) Water-core for pollution measurements in the deep ultraviolet. Appl. Opt., 37, 4991.ADSCrossRefGoogle Scholar
  37. 37.
    Klein, K. F., Rode, H., Belz, M., Boyle, W. J. O. and Grattan, K. T. V. (1996) Water quality measurement using fiber optics at wavelengths below 230nm in Chemical, Biomedical and Environmental Fiber Sensors VIII, ed. Lieberman, R. A., Proc. SPIE, 2836, 186.Google Scholar
  38. 38.
    Ruddy, V., MacCraith, B. and McCabe, S. (1990) Remote sensing using a fluoride fibre evanescent probe. Proc. SPIE, 1267, 97.CrossRefGoogle Scholar
  39. 39.
    Paul, P. H. and Kychakoff, G. (1987) Fibre optic evanescent field absorption sensor. Appl. Phys. Lett, 51, 12.ADSCrossRefGoogle Scholar
  40. 40.
    DeGrandpre, M. D. and Burgess, L. W. (1988) Long path fibre-optic sensor for evanescent field absorbance measurements. Anal. Chem., 60, 2582.CrossRefGoogle Scholar
  41. 41.
    Block, M. J. and Hirschfeld, T. B. (1986) Fluorescence immunoassay, GB Patent 2, 180 338A.Google Scholar
  42. 42.
    Kvasnik, F. and McGrath, A. D. (1989) Distributed chemical sensing utilising evanescent wave interactions. Proceedings SPIE, 1172, 75.ADSCrossRefGoogle Scholar
  43. 43.
    Morisawa, M., Muto, S. and Vishno, G. (1998) POF sensors for detecting oxygen in air and in water. Proc. POF98, Berlin, 243–4.Google Scholar
  44. 44.
    Harmer, A. L. (1980) Refractive index responsive light-signal system, US Patent 4, 240 747.Google Scholar
  45. 45.
    Smela, E. and Santiago-Aviles, J. J. (1988) A versatile twisted optical fibre sensor. Sensors Actuators, 13, 117.CrossRefGoogle Scholar
  46. 46.
    Attridge, J. W., Leaver, K. D. and Cozens, J. R. (1987) Design of a fibre optic pH sensor with a rapid response. J. Phys. E, 20, 548.ADSCrossRefGoogle Scholar
  47. 47.
    Villuendas, F. and Pelayo, J. (1990) Optical fibre device for chemical sensing based on surface plasmon excitation. Sensors Actuators, A21–A23, 1142.Google Scholar
  48. 48.
    Butler, M. A. (1984) Optical fibre hydrogen sensor. Appl. Phys. Lett., 45, 1007.ADSCrossRefGoogle Scholar
  49. 49.
    Peng, Y. T., Tang, Y. and Sirkis, J. S. (1999) Hydrogen sensors based on palladium electroplated Fiber Bragg Gratings (FBG). in 13th International Conference on Optical Fiber Sensors, eds. B.Y.Kim and K.Hotate, Proc. SPIE 3746, 171–4.Google Scholar
  50. 50.
    Farahi, F., Akhavan, P., Jones, J. D. C. and Jackson, D. A. (1987) Optical fibre flammable gas sensor. J. Phys, E, 20, 435.MathSciNetADSGoogle Scholar
  51. 51.
    Pinchbeck, D. (1986) The optical fibre cryogenic leak detection system. Trans. Inst. Meas. Control (London), 19, 46.Google Scholar
  52. 52.
    Hartog, A. (1999) Distributed fiber optic sensors - principles and applications. In Optical Fiber Sensor Technology 1, eds. Grattan, K. T. V. and Meggitt, B. T., Kluwer Academic Publishers, London.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • J. O. W. Norris

There are no affiliations available

Personalised recommendations