Microbend fiber optic sensors

  • John W. BertholdIII
Part of the Optoelectronics, Imaging and Sensing Series book series (OISS, volume 3)


The microbend sensor was one of the earliest fiber optic sensors. Microbend losses have always been a curse to the fiber optic cable designer, but it is this very same microbend loss effect in optical fibers which was exploited by the microbend sensor designer who adapted the microbend effect to the measurement of many physical parameters and physical variables such as temperature and pressure.


Fiber Optic Sensor Buffer Coating Multimode Fiber Tooth Spacing Multimode Optical Fiber 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fields, J. N. et al. (1980) Fiber optic pressure sensor. J. Acoust. Soc. Am., 67, 816–818.CrossRefGoogle Scholar
  2. 2.
    Fields, J. N. (1980) Attenuation of a parabolic-index fiber with periodic bends. Appl. Phys. Lett., 36, 799–801.CrossRefGoogle Scholar
  3. 3.
    Nelson, D. F. et al. Vibration-induced modulation of fiberguide transmission. Proc. Topical Meeting on Optical Fiber Transmission. TU-E7-I to TU-E7–4.Google Scholar
  4. 4.
    Fields, J. N. and Cole, J. H. (1980) Fiber microbend acoustic sensor. Appl. Opt., 19, 3265–3267.CrossRefGoogle Scholar
  5. 5.
    Lagakos, N. et al. (1981) Microbending fiber optic sensor design optimization. Proc. CLEO’81, p. 100.Google Scholar
  6. 6.
    Lagakos, N. et al. (1982) Microbend fiber optic sensor as extended hydrophone. IEEE J. Quantum Electron., OF-18. 1633–1638.CrossRefGoogle Scholar
  7. 7.
    Lagakos, N. et al. (1981) Multimode optical fiber displacement sensor. Appl. Opt., 20, 167–168.CrossRefGoogle Scholar
  8. 8.
    Horsthuis, W. H. G. and Fluitman, J. H. J. (1982) Sensitivity dependence on number of bends in a fiber optic microbend pressure sensor. NTG-Fachberichte, 79, 147–152.Google Scholar
  9. Horsthuis, W. H. G. and Fluitman, J. H. J. (1983) Development of fibre optic microbend sensors. Sensors Actuators, 3, 99–110.CrossRefGoogle Scholar
  10. 9.
    Diemeer, M. B. J. and Trommel. E. S. (1984) Fiber optic microbend sensors: sensitivity as a function of distortion wavelength. Opt. Lett., 9, 260–262.CrossRefGoogle Scholar
  11. 10.
    Lagakos, N. and Bucaro, J. A. (1987) Optimizing fiber optic microbend sensor. Proc. SPIE, 718, 12–20.CrossRefGoogle Scholar
  12. 11.
    Mavadaat, R. (1984) Ray analysis of microbend fibre sensors. Sensors Actuators, 6, 289–295.CrossRefGoogle Scholar
  13. 12.
    Hastings, M. C. and Nippa, D. F. (1994) Integration of the finite element and beam propagation methods to determine performance of microbend sensors. Proc. OFS, 10, 376–379.Google Scholar
  14. 13.
    Wanser, K. H. et al. (1994) Novel fiber devices and sensors based on multimode fiber Bragg gratings. Proc. OFS, 10, 265–268.Google Scholar
  15. 14.
    Yao, S. K. and Asawa, C. K. (1983) Microbending fiber optic sensing. Proc. SPIE, 412, 9–13.CrossRefGoogle Scholar
  16. 15.
    Harmer, A. L. (1985) Distributed microbending sensor. Proc. OFS, 3, 126–128.Google Scholar
  17. 16.
    Oscroft, G. (1987) Intrinsic fiber optic sensors. Proc. SPIE, 734, 207–213.CrossRefGoogle Scholar
  18. 17.
    Jenstrom, D. T. and Chen, C. L. (1989) A fiber optic microbend tactile sensor array. Sensors Actuators, 20. 239–248.CrossRefGoogle Scholar
  19. 18.
    Lagakos, N. et al. (1987) Microbend fiber optic sensor. Appl. Opt, 26, 2171–2180.CrossRefGoogle Scholar
  20. 19.
    Berthold, J. W. (1984) High temperature fiber optic pressure sensor. Proc. ISA, 30, 85–94.Google Scholar
  21. 20.
    Spillman, Jr., W. B. and Lord, J. R. (1987) Self-referencing multiplexing technique for intensity modulating fiber optic sensors. Proc. SPIE, 718, 182–191.CrossRefGoogle Scholar
  22. 21.
    Lindsay, T. A. and Morton, J. D. (1989) Standard fiber optic interface for aerospace applications: time domain intensity normalization. Proc. SPIE, 989, 45–55.Google Scholar
  23. 22.
    Wlodarczyk, M. T. (1991) Environmentally insensitive commercial pressure sensor. Proc. SPIE, 1368, 121–131.Google Scholar
  24. 23.
    Miers, D. R. et al. (1986) Life tests of optical fibers in a microbend configuration. ACerS, 88th Annual Meeting, Glass Division, Chicago, IL.Google Scholar
  25. 24.
    Krohn, D. A. et al. (1983) Understanding fiber optics for automated control. Part II. Sensing techniques, applications, and economics. Plant Eng., 37, 56–58.Google Scholar
  26. 25.
    Spenner, K. (1985) Microbending pressure and displacement sensor. Proc. OFS, 3, 146–148.Google Scholar
  27. 26.
    Berthold, J. W. et al. (1987) Design and characterization of a high temperature fiber optic pressure transducer. J. Lightwave Technol., LT-5, 870–876.CrossRefGoogle Scholar
  28. 27.
    Reed, S. E. et al. (1993) Fiber optic total pressure transducer for aircraft applications. Proc. SPIE, 2070, 17–23.CrossRefGoogle Scholar
  29. 28.
    Lumholt, O. et al. (1991) Simple fiber optic low-temperature sensor that uses micro-bending loss. Opt. Lett., 16, 1355–1357.CrossRefGoogle Scholar
  30. 29.
    Cutolo, A. and Gallo, M. (1991) Microbending optoelectronic sensor for on-line temperature measurements in high-power electrical systems. Eur. Trans. Elec. Power Eng., 1, 281–287.CrossRefGoogle Scholar
  31. 30.
    Freal, J. B. et al. (1987) A microbend accelerometer for borehole deployment. J. Lightwave Technol., LT-5, 993–996.CrossRefGoogle Scholar
  32. 31.
    Miers, D. R. et al. (1988) Design and characterization of fiber optic accelerometers. Proc. SPIE, 838, 314–317.CrossRefGoogle Scholar
  33. 32.
    Sovik, R. E. (1985) Implementation of fiber optics in a vortex shedding flowmeter. Proc. ISA Digitech ‘85, pp. 207–211.Google Scholar
  34. 33.
    Reed, S. E. and Berthold, J. W. (1986) Development of a microbend strain gage. SEM Fall Conference on Experimental Mechanics, Keystone, CO. See also US Patent 5 020 379.Google Scholar
  35. 34.
    Weiss, J. D. (1989) Fiber optic strain gage. J. Lightwave Technol., 7, 1308–1318.CrossRefGoogle Scholar
  36. 35.
    Varshneya, D. et al. (1991) Fiber optic speed sensor for advanced gas turbine engine control. Proc. SPIE, 1367, 181–191.CrossRefGoogle Scholar
  37. 36.
    Schoenwald, J. S. and Martin, J. F. (1984) Fiber optic tactile sensor for robot grippers. Soc. Manuf. Eng., MS84–1041.Google Scholar
  38. 37.
    Falco, L. and Debergh, P. (1989) Birmorphous distributed transducer for temperature threshold sensor. Proc. SPIE, 1011, 166–172.CrossRefGoogle Scholar
  39. 38.
    Asawa, C. K. et al. (1982) High sensitivity fibre optic strain sensors for measuring structural distortions. Electron. Lett., 18, 362–364.CrossRefGoogle Scholar
  40. 39.
    Rogers, A. J. (1991) Distributed optical fiber sensing. Proc. SPIE, 1508, 2–24.CrossRefGoogle Scholar
  41. 40.
    Udd, E. et al. (1990) Microbending fiber optic sensors for smart structures. Proc. SPIE, 1170, 478–482.CrossRefGoogle Scholar
  42. 41.
    Wanser, K. H. et al. (1993) Distributed fiber optic sensors for civil structures using OTDR. CA State Fullerton Conference Monograph 9308 W3, pp. 303–327.Google Scholar
  43. 42.
    Culshaw, B. and Dakin, J. (eds) (1989) Optical Fiber Sensors: Systems and Applications. Artech House, Norwood, MA.Google Scholar
  44. 43.
    Udd, E. (1991) Fiber Optic Sensors: An Introduction for Engineers and Scientists. Wiley, New York.Google Scholar
  45. 44.
    Zuech, N. (1992) Handbook of Intelligent Sensors for Industrial Automation. Addison-Wesley, Reading, MA.Google Scholar
  46. 45.
    Berthold, J. W. (1991) Field test results on fiber optic pressure transmitter system. Proc. SPIE, 1584, 39–47.CrossRefGoogle Scholar
  47. 46.
    Berthold, J. W. et al. (1994) Flight test results from FOCSI fiber optic total pressure transducer. Proc. SPIE, 2295, 216–222.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • John W. BertholdIII

There are no affiliations available

Personalised recommendations