Advertisement

Optical current sensor technology

  • K. T. V. Grattan
  • Y. N. Ning
Chapter
Part of the Optoelectronics, Imaging and Sensing Series book series (OISS, volume 3)

Abstract

The principles of optical and optical fiber current sensor technology have been known for some considerable time, and some of the earliest papers on optical fibre measurement techniques have considered this topic. The general advantages of the use of optical technology were discussed by Rogers [1] in an earlier volume, in which the essential principles of the methods available and a description of some of the essential technologies were described. This builds upon that introduction, and discusses in some detail the optical current sensor devices and technology advances which have been developed in recent years. Optical current sensors (OCSs) show several important features when compared with conventional current transformers (CTs), such as their having highly effective isolation from high line potentials offered by the dielectric nature of the optical fibers, freedom from the saturation effect which may be observed in conventional transformers, the potential to make measurements in high voltage and/or high magnetic induction noise fields, a high linear response over a wide frequency bandwidth, a remote, high-speed measurement capability for monitoring or metering purposes, and the fact that they are compact and light-weight measuring devices, available at potentially low cost.

Keywords

Faraday Rotation Current Sensor Yttrium Iron Garnet Faraday Effect Bulk Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogers, A. J. (1995) Optical fiber current measurement, Optical Fiber Sensor Technology (Eds K. T. V. Grattan and B. T. Meggitt). Chapman and Hall, London, pp. 421–439.Google Scholar
  2. 2.
    Day, G. W. (1989) Recent advances in Faraday effect sensors, Springer Proceedings in Physics, 44, Optical Fiber Sensors. Springer, Berlin, p. 250.Google Scholar
  3. 3.
    Rogers, A. J. (1973) Optical technique for measurement of current at high voltage, Proc. IEE, 120 (3), 261–267.Google Scholar
  4. 4.
    Bush, S. P. and Jackson D. A. (1992) Numerical investigation of the effects of birefringence and total internal reflection on Faraday effect current sensors, Appl. Opt., 31 (25), 5366.CrossRefGoogle Scholar
  5. 5.
    Ning, Y. N., Wang, Z. P., Palmer, A. W., Grattan, K. T. V. and Jackson, D. A. (1995) Recent progress in optical current sensing techniques, Rev. Sci. Instrum., 66, 3097 3111.Google Scholar
  6. 6.
    Born, M. and Wolf, E. (1986) Principles of Optics, 6th edn., Pergamon Press, Oxford.Google Scholar
  7. 7.
    Rogers, A. J. (1977) Optical methods for measurement of voltage and current on power systems, Opt. Lasers Technol., 273.Google Scholar
  8. 8.
    Donati, S., Annovzzi-Lodi, V. and Tambosso, T. (1988) Magneto-optical optical current sensors for electrical industry: analysis of performances, IEE Proc., J, 135 (5), 372.Google Scholar
  9. 9.
    Sato, T., Takahashi, G. and Inui, Y. (1983) Method and apparatus for optically measuring a current, Europe Patent, Publication No. 0088419 Al.Google Scholar
  10. 10.
    Ning, Y. N., Chu, B. C. B. and Jackson, D. A. (1991) Miniature Faraday current sensor based on multiple critical angle reflections in a bulk-optic ring, Opt. Lett, 16, 1996.Google Scholar
  11. 11.
    Chu, B. C. B., Ning, Y. N. and Jackson, D. A. (1992) Faraday current sensor that uses a triangular-shaped bulk-optic sensing element, Opt. Lett., 17, 1167.CrossRefGoogle Scholar
  12. 12.
    Ulmer, E. A. Jr. (1988) High accuracy Faraday rotation measurement, OSA/IEEE 1988 Technical Digest of Optical Fiber Sensors Topical Meeting, 27–29 January, New Orleans, LA, p. 288.Google Scholar
  13. 13.
    Ulmer, E. A. Jr. (1990) A high-accuracy optical current transducer for electric power systems, IEEE Trans. Power Delivers, 5 (2), 892.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kersey, A. D. and Jackson, D. A. (1986) Current sensing utilizing heterodyne detection of Faraday effect in single-mode optical fiber, IEEE J. Lightwave Technol., 4 (6), 2084.CrossRefGoogle Scholar
  15. 15.
    Kersey, A. D. and Davis, M. A. (1989) All-fiber Faraday-rotation current sensor with remote laser-FM based heterodyne detection, Springer Proceedings in Physics, 44, Optical Fiber Sensors, Springer, Berlin, p. 285.Google Scholar
  16. 16.
    Leilabady, P. A., Wayte, A. P., Berwick, M., Jones, J. D. C. and Jackson, D. A. (1986) A pseudo-reciprocal fiber-optic Faraday rotation sensor: current measurement and data communication applications, Opt. Commun., 59 (3), 173.CrossRefGoogle Scholar
  17. 17.
    Jackson, D. A., Kersey, A. D., Corke, M. and Jones, J. D. C. (1982) Pseudo-heterodyne detection scheme for optical interferometers, Electron. Lett., 18, 1081.CrossRefGoogle Scholar
  18. 18.
    Ulrich, R. and Simon, A. (1979) Polarisation optics of twisted single-mode fibers, Appl. Opt., 18 (13), 2241.CrossRefGoogle Scholar
  19. 19.
    Laming, R. I. and Payne, D. N. (1989) Electric current sensors employing spun highly birefringent optical fibers, IEEE J. Lightwave Technol., 7 (12), 2084.CrossRefGoogle Scholar
  20. 20.
    Day, G. W. and Etzel, S. M. (1985) Annealing of bend-induced birefringence in fiber current sensors, Tech. Digest Int. Conf. Int.grated Optics and Optical Fiber Communication. European Conf. Optical Communication, Venice, p. 871.Google Scholar
  21. 21.
    Tang, D. and Day, G. W. (1988) Progress in the development of miniature optical fiber current sensors, IEEE Lasers and Electro-Optics Society LEOS’88 Annual Meeting, Conference Proc., pp. 306.Google Scholar
  22. 22.
    Tang, D., Rose, A. H. and Day, G. W. (1990) Practical considerations in the design of optical fiber current sensors SPIE, 1267, Fiber Optic Sensors IV, p. 29.Google Scholar
  23. 23.
    Ren, Z. B. and Robert, Ph. (1989) Input polarization coding in fiber current sensors, Springer Proceedings in Physics, 44, Optical Fiber Sensors, Springer, Berlin, p. 261Google Scholar
  24. 24.
    Ben-Kish, A., Tur, M. and Shafir, E. (1991) Geometrical separation between the birefringence components in Faraday-rotation fiber-optic current sensors, Opt. Lett., 16 (9), 687.CrossRefGoogle Scholar
  25. 25.
    Ahlers, H. and Bosselmann, Th. (1990) Complete polarization analysis of a magneto-optic current transformer with a new polarimeter, Conf. Proc. 7th Optical Fiber Sensors Conference, p. 81.Google Scholar
  26. 26.
    Chu, W., McStay, D. and Rogers, A. J. (1991) Current sensing by mode coupling in fiber via the Faraday effect, Electron. Lett., 27 (3), 207.CrossRefGoogle Scholar
  27. 27.
    Laming, R. I. and Payne, D. N. (1989) Electric current sensors employing spun high birefringence optical fibers, IEEE J. Lightwave Technol., 7 (12), 2084.CrossRefGoogle Scholar
  28. 28.
    Pistoni, N. C. and Marttinelli, M. (1993) Vibration-insensitive fiber-optic current sensor, Opt. Lett., 18 (4), 314.CrossRefGoogle Scholar
  29. 29.
    Kurosawa, K. (1996) Optical current transformers using flint glass fiber as a Faraday sensor element. Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 134–139.Google Scholar
  30. 30.
    Kurosawa, K., Yoshida, S. and Sakamoto, K. (1994) Polarization maintaining properties of the flint fiber for the Faraday sensor element, Conf. Proc. 10th Optical Fiber Sensors Conference, Glasgow, SPIE, 2360, 28–31.Google Scholar
  31. 31.
    Yoshida, S., Kurosawa, K. and Sano, O. (1996) Development of an optical current transformer using a flint glass fiber for a gas circuit break, Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 172–175.Google Scholar
  32. 32.
    Rogers, A. J., Xu, J. and Yao, J. (1994) Vibration immunity for optical-fiber current measurement, Conf. Proc. 10th Optical Fiber Sensors Conference, Glasgow, SPIE, 2360, 40–44.Google Scholar
  33. 33.
    Kung, A., Nicati, P. A. and Robert, P. A. (1996) Brillouin fiber optic current sensor, Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 156–159.Google Scholar
  34. 34.
    Kanoi, M., Takahashi, G., Sato, T., Higaki, M., Mori, E. and Okmura, K. (1986) Optical voltage and current measuring system for electric power systems, IEEE Trans. Power Delivery, 1, 91.CrossRefGoogle Scholar
  35. 35.
    Caese, T. W. and Johnston, P. (1990) A magneto-optic current transducer, IEEE Trans. Power Delivery, 5, 548.CrossRefGoogle Scholar
  36. 36.
    Cease, T. W., Driggans, J. G. and Weikel, S. J. (1991) Optical voltage and current sensors used in a revenue metering system, IEEE Trans. Power Delivery, 6, 1374.CrossRefGoogle Scholar
  37. 37.
    Chu, B. C. B., Ning, Y. N. and Jackson, D. A. (1992) Polarization analysis of bulk optic Faraday current sensor with a triangular configuration, San Diego ‘82–37th Annual International Symposium on Optical and Optoelectronic Applied Science and Engineering, SPIE, 1746, 21–23.Google Scholar
  38. 38.
    Ning, Y. N. and Jackson, D. A. (1993) Faraday effect optical current sensor using a bulk glass sensing element, Opt. Leu., 18 (10), 835.CrossRefGoogle Scholar
  39. 39.
    Ning, Y. N., Wang, Z. P., Grattan, K. T. V. and Palmer, A. W. (1995) Faraday current sensor using a novel multioptical-loop sensing element, Meas. Sci. Technol., 6 (9), 1339–1342.CrossRefGoogle Scholar
  40. 40.
    Zhang, W., Ning, Y. N., Chu, B. C. B., Grattan, K. T. V. and Palmer, A. W. (1996) Vibration-induced noise in a fiber lead of an optical current measurement system, Rev. Sci. Instrum., 67 (2), 553–557.CrossRefGoogle Scholar
  41. 41.
    Ning, Y. N., Liu, Y., Grattan, K. T. V., Palmer, A. W. and Weir, K. (1994) The relation between the coherence length and modal noise in a graded index multimode fiber for white light interferometric systems, Opt. Leu., 19 (6), 372–374.Google Scholar
  42. 42.
    Hercher, M. (1991) Ultra-high resolution interferometric sensors, Optical Photonics News, 11, 24.CrossRefGoogle Scholar
  43. 43.
    Ning, Y. N., Chu, B. C. B. and Jackson, D. A. (1991) Interrogation of a conventional current transformer via a fiber optic interferometer, Opt. Leu., 16 (18), 1448.CrossRefGoogle Scholar
  44. 44.
    Ning, Y. N., Liu, T. Y. and Jackson, D. A. (1992) Two low-cost robust electro-optic hybrid current sensors capable of operation at extremely high potential, Rev. Sci. Instrum., 63 (12), 5771.CrossRefGoogle Scholar
  45. 45.
    Jackson, D. A., Ning, Y. N., McGarrity, C. and Santos, J. L. (1992) Three phase current measurement using a hybrid current sensing technique, Conf. Proc. 8th Optical Fiber Sensors Conference, Monterey, CA, p. 426.Google Scholar
  46. 46.
    Kirkham, H. and Johnston, A. R. (1989) Optically powered data link for power system applications, IEEE Trans. Power Delivery, 4 (4), 1997.CrossRefGoogle Scholar
  47. 47.
    Adolfson, M., Einnvall, C. H., Lindberg, P., Samuelson, J., Ahlgren, L. and Ediund, H. (1989) EHV series capacitor banks. A new approach to platform to ground signalling, relay protection and supervision, IEEE Trans. Power Delivery, 4 (2), 1369.CrossRefGoogle Scholar
  48. 48.
    Tonnesen, O., Beatty, N. and Skilbreid, 0. (1989) Electrooptic methods for measurement of small DC currents at high voltage level, IEEE Trans Power Delivery, 4 (3), 1568.Google Scholar
  49. 49.
    Pilling, N. A., Holmes, R. and Jones, G. R. (1993) Optical fiber current measurement system using liquid crystals and chromatic modulation, IEE Proc., C, 140 (5), 351.Google Scholar
  50. 50.
    Bucholtz, F., Koo, K. P., Kersey, A. D. and Dandridge, A. D. (1986) Fiber optic magnetic sensor development, Fiber Optic and Laser Sensors IV, SPIE, 718, 56, 1986.Google Scholar
  51. 51.
    Bucholtz, F., Dagenais, D. M., Koo, K. P. and Vohra, S. (1990) Recent developments in fiber optic magnetostrictive sensors, Fiber Optic and Laser Sensors VIII, SPIE, 1367, 226.Google Scholar
  52. 52.
    Bucholtz, F., Dagenais, D. M. and Koo, K. P. (1989) High-frequency fiber-optic magnetometer with 70fT/v/Hz resolution, Electron. Lett., 25 (25), 1719.Google Scholar
  53. 53.
    Bucholtz, F., Koo, K. P., Sigel, G. H. Jr. and Dandridge, A. D. (1985) Optimization of the fiber/metallic glass bond in fiber-optic magnetic sensors, IEEE J. Lightwave Technol., 3 (4), 814.CrossRefGoogle Scholar
  54. 54.
    Koo, K. P., Bucholtz, F., Dagenais, D. M. and Dandridge, A. D. (1989) A compact fiber-optic magnetometer employing an amorphous metal wire transducer, IEEE Photonics Technol. Lett., 1 (12).Google Scholar
  55. 55.
    Jarzynski, J., Cole, J. H., Bucaro, J. A. and Davis, C. M. Jr. (1980) Magnetic field sensitivity of an optical fiber with magnetostrictive jacket, Appl. Opt., 19 (22), 3746.CrossRefGoogle Scholar
  56. 56.
    Bibby, G. W., Larnson, D. C., Tyagi, Y. and Bobb, L. C. (1992) Fiber optic magnetic field sensors using metallic-glass-coated optical fibers, Conf. Proc. 8th Optical Fiber Sensors Conference, p. 161.Google Scholar
  57. 57.
    Borrelli, N. F. (1964) Faraday rotation in glasses, •. Chem. rhys., 41(11), 3289.Google Scholar
  58. 58.
    Bartlett, S. C., Farahi, F. and Jackson, D. A. (1990) A common path optical fiber heterodyne interferometric current sensor, Conf Proc. 7th Opticay 1 7 tber Sensors Conference, p. 85.Google Scholar
  59. 59.
    Svantesson, K., Sohlstrom, H. and Holm, U. (1990) Magneto-optical garnet materials in fiber optic sensor systems for magnetic field sensing, Eie-’r-?-?ptic and Magneto-Optic Materials II, SPIE, 1274, 260.Google Scholar
  60. 60.
    Imaeda, M. and Kozuka, Y. (1992) Optical magnetic field sensors using iron garnet crystals, Conf. Proc. 8th Optical Fiber Sensors Conference, p. 386.Google Scholar
  61. 61.
    Wolfe, R. and Lieberman, R. A. (1991) Fiber optic magnetic field sensor based on domain wall motion in garnet film waveguides, Appl. Phys. retc., 58 (1.6), 1733.Google Scholar
  62. 62.
    Wolfe, R., Gyorgy, E. M., Lieberman, R. A., Fratello. V. J., Licr-a, S. J., Deeter, M. N. and Day, G. W. (1992) High frequency magnetic field sensors based on the Faraday effect in garnet thick films, Conf. Proc. 8th Optical Fiber Sensors Conference, p. 390.Google Scholar
  63. 63.
    Minier, V., Persegol, D., Lovato, J. L. and Kevorkian, A. (1996) Integrated optical current sensor for a high-power system, Conf Proc. I I th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 164–167.Google Scholar
  64. 64.
    Minier, V., Danel, A., Persegol, D. and Kevorkian, A. (1995) Fr,-,s. ‘CIO’95,pp. 379, Delft, The Netherlands.Google Scholar
  65. 65.
    Day, G. W., Rochford, K. B. and Rose, A. H. (1996) Fundamentals and problems of fibre current sensors, Conf. Proc. Ilth Optical Fiber Sensors Conference, Sapporo, Japan, pp. 124–129.Google Scholar
  66. 66.
    Sato, T., Sone, I., Hayashida, H. and Nakagama. Y. (1996) Development and applications of bulk-optic current sensors, Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 130–133.Google Scholar
  67. 67.
    Kanoi, M. et al.(1986) Optical voltage and current measuring system for electric power system, IEEE Power Delivery, PWRD-1(1), 91–97.Google Scholar
  68. 68.
    Kobayashi, S. et al.(1991) Development of optical current transformers with the portions of free gas space propagation of light, T. IEE apa;n, ill-B(9), 999–1006.Google Scholar
  69. 69.
    Fujimoto, T. et al.(1994) Commercial operation of o f.tical,:u.re_.t transformers for overcurrent detection, Power and Energy Division Conventon Records of IEE Japan, No. 641, pp. 862–863.Google Scholar
  70. 70.
    Ishizuka, S., Itoh, N. and Minemoto, H. (1996) Optical fibre current sensors using garnet crystal for power distribution fields. Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 140–141.Google Scholar
  71. 71.
    Katsukawa, H. and Yokoi, S. (1996) Optical current transducer with a bulk type BSO Faraday sensor for power systems, Conf Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 142–143.Google Scholar
  72. 72.
    Sone, I. (1996) Ring glass type Faraday effect current sensor, Conf. Froc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 144–145.Google Scholar
  73. 73.
    Takagi, H. et al.(1994) Future-oriented substation using computer technologies, International Conference on Large High Voltage Electric System (C1GRE), 23/13–04.Google Scholar
  74. 74.
    Kuwabara, T. et al.Design and dynamic response characteristics of 400 MW adjustable speed pumped storage unit for Ohkawachi power station, IEEE PES 1995 Summer Meeting, No. 95SM615–5EC.Google Scholar
  75. 75.
    Willsch, M. and Bosselmann, T. (1996) Vibration compensation for a glass ring type magneto optic current sensor, Conf. Proc. 11 th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 148–151.Google Scholar
  76. 76.
    Niewisch, J., Menke, P., Krammer, P. and Bosselmann, T. (1996) Temperature drift compensation of a potential transformer using a BSO Pockels cell, Conf. Proc. 11th Optical Fiber Sensors Conference, Sapporo, Japan, pp. 152–155.Google Scholar
  77. 77.
    Kurosawa, K., Yoshida, S. and Sakamoto, K. (1994) A method for improvement of immunity from environment in Faraday effect current using the flint glass fiber, Conf. Proc. 10th Optical Fiber Sensors Conference, SPIE, 2360, 430–433.Google Scholar
  78. 78.
    Emerging Technologies Working Group, Power Systems Instrumentation and Measurements Committee, The Fiber Optic Sensors Working Group, Fiber Optics Subcommittee, Power Systems Communications Committee, Optical current transducers for power systems: a review, IEEE Trans. Power Delivery, 9 (4), 1778–1788, 1994.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • K. T. V. Grattan
  • Y. N. Ning

There are no affiliations available

Personalised recommendations