The application of optical fiber sensors in advanced fiber reinforced composites. Part 3: Strain, temperature and health monitoring

  • T. Liu
  • G. F. Fernando
Part of the Optoelectronics, Imaging and Sensing Series book series (OISS, volume 3)


The virtues of advanced fiber-reinforced composites (AFRCs) were highlighted in the previous chapters. A major concern with the use of AFRCs is the detection of damage within these materials. AFRCs can sustain significant internal damage before the nature of the damage is visible on the surface. In general, this is because it is the surface which is opposite to the impact surface, i.e. the tensile face which sustains the bulk of the damage. With reference to aerospace structures, impact damage can be induced by bird-strikes, damage from debris and accidental impacts from tools being dropped on the structure. In the case of fatigue damage, the design criteria which are used for these materials ensure that the operating loads are well below those required to initiate damage. However, an issue to note is that aerospace structures may be under a state of dynamic stress when the impact event takes place. There is sufficient evidence now to suggest that the damage mechanics when a composite is impacted under load are different, and the degree of damage is more significant, when compared with conventional impact testing [1]. It is also worth bearing in mind that expensive sensor systems may not be a prudent investment if the sensor is damaged when it receives the first impact.


Acoustic Emission Health Monitoring Damage Detection Impact Damage Strain Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brooks, D. (1997) Unpublished results. DERA, Farnborough, Second Progress Report, Brunel University, UK, August.Google Scholar
  2. 2.
    Reifsnider, K. L. (ed.) (1991) Fatigue of Composite Materials, Vol. 4, Composite Materials Series, Elsevier, Amsterdam.Google Scholar
  3. 3.
    Stinchcomb, W. W. (1980) Mechanics of Nondestructive Testing, Plenum Press, New York.CrossRefGoogle Scholar
  4. 4.
    Reinhart, T. J. (ed.) (1987) Composites, Vol. 1, Engineering Materials Handbook, ASM International, Ohio.Google Scholar
  5. 5.
    Purslow, D. (1988) Fractography of fibre-reinforced thermoplastics, Part 3. Composites, 19 (5), 358–366.CrossRefGoogle Scholar
  6. 6.
    Fernando, G. F., Dixon, R. F., Adam, T., Reiter, H. and Harris, B. (1988) Fatigue behaviour of hybrid composites. 1. Carbon/Kevlar hybrids. Journal of Materials Science, 23, 3732–3743.CrossRefGoogle Scholar
  7. 7.
    Curtis, P. T., Gates, J. and Margerison, G. G. (1993) The selection of cyclic load frequency for the fatigue testing of fibre reinforced polymeric composites. RAE Technical Report 93017, Farnborough, Guildford.Google Scholar
  8. 8.
    Al-Khodairi, F. A. (1996) Static and dynamic properties of unidirectional hybrid resin and hybrid fibre composites. PhD Thesis, Brunel University.Google Scholar
  9. 9.
    Guild, F. J., Phillips, M. G. and Harris, B. (1980) Acoustic emission studies of damage in GRP. NDT International,13(5), 209–218.Google Scholar
  10. 10.
    Maslouhi, A. Proulx, D., Roy, C., Liu, K., McEwen, K., Measures, R. M. and Zimcik, D. G. (1991) Use of optical fibre sensors for acoustic emission detection within composite materials. International SAMPE Symposium and Exhibition, 36, 259–271.Google Scholar
  11. 11.
    Tapanes, E. (1991) Real-time structural integrity monitoring using a passive quadrature demodulation, localised Michelson optical fibre interferometer capable of simultaneous strain and acoustic emission sensing. Fibre Optic Smart Structures and Skin, IV, SPIE, 1588, 356–367.CrossRefGoogle Scholar
  12. 12.
    Baillie, P. W. R., Hale, K., Fernando, G. F. and Jones, B. E. (1995) Optical fibre sensing of acoustic emission in fibre reinforced composites. Proc. Sensors and their Applications VII, IoP, Dublin.Google Scholar
  13. 13.
    Davila, A., Kerr, D. and Kaufmann, G. H. (1996) Fast electro-optical system for pulsed ESPI carrier fringe generation. Optics Communications, 123, 457–464.CrossRefGoogle Scholar
  14. 14.
    Chan, Y. W. (1994) Measurement of in-plane residual displacement due to interference fitting by TV-holographic interferometry. Strain, August, 91–94.Google Scholar
  15. 15.
    Steinchen, W., Schuth, M. and Yang, L. X. (1994) Strain measured on plane and curved surfaces by means of the shearographic methods. Part 1. Strain, August, 105–108.Google Scholar
  16. 16.
    Petzing, J. N. and Tyrer, J. R. (1996) Speckle shearing interferometry applied to the measurement of sonar transducer mode shapes. Proc. Applied Optics and Optoelectronics Conf., IOP, Reading, pp. 205–210.Google Scholar
  17. 17.
    Hale, K. F. (1985) Using optical fibres to detect cracks. Process Engineering, 66 (8), 27.Google Scholar
  18. 18.
    Hayes, S., Liu, T., Brooks, D., Monteith, S., Ralph, B., Vickers, S. and Fernando, G. F. (1997) In situ self-sensing fibre-reinforced composites. Journal of Smart Structures and Materials, 6, 432–440.CrossRefGoogle Scholar
  19. 19.
    Martin, A. R., Fernando, G. F. and Hale, K. F. (1997) Impact damage detection in filament wound tubes using embedded optical fibre sensors. Journal of Smart Materials and Structures, 6, 470–476.CrossRefGoogle Scholar
  20. 20.
    Badcock, R. A. (1997) PhD Thesis, Brunel University.Google Scholar
  21. 21.
    Fernando, G. F. and Khan, N. (1997) Unpublished results. Brunel University.Google Scholar
  22. 22.
    Dry, C. M. (1992) Smart materials which sense, activate and repair damage; hollow porous fibres in composites release chemicals from fibres for self-healing, damage prevention, and/or dynamic control. Proc. 1st European Conf. on Smart Structures and Materials, pp. 367–371.Google Scholar
  23. 23.
    Vaziri, M. and Chen, C. L. (1992) Etched fibre as strain gauges. Journal of Lightwave Technology, 10 (6), 836–841.CrossRefGoogle Scholar
  24. 24.
    Badcock, R. and Fernando, G. F. (1995) An intensity-based optical fibre sensor for fatigue damage detection in advanced fibre-reinforced composites. Journal of Smart Materials and Structures, 4, 223–230.CrossRefGoogle Scholar
  25. 25.
    Martin, A., Badcock, R., Nightingale, C. and Fernando, G. F. (1997) A novel optical fibre-based strain sensor. IEEE Photon Technology Letter, 9 (7), 982–984.CrossRefGoogle Scholar
  26. 26.
    Spillman, W. B. Jr. and Lord, J. R. (1987) Self-referencing multiplexing technique for intensity-modulating sensors, SPIE, 718, 182–191.CrossRefGoogle Scholar
  27. 27.
    Berthold, J. W. (1995) Historical review of microbend sensors. Journal of Lightwave Technology, 13 (7), 11–93.CrossRefGoogle Scholar
  28. 28.
    Lammerink, T. S. J. and Fluitman, J. H. J. (1984) Measuring method for optical fibre sensors. Journal of Physics E: Scientific Instruments, 17, 1127–1129.CrossRefGoogle Scholar
  29. 29.
    Dakin, J. P., Wade, C. A. and Withers, P. B. (1988) An optical fibre sensor for the measurement of pressure. Fibre and Integrated Optics, 7, 35–46.CrossRefGoogle Scholar
  30. 30.
    Johnston, S. F. (1992) Gas monitors employing infrared LEDs. Measurement Science and Technology, 3, 191.CrossRefGoogle Scholar
  31. 31.
    Senior, J. M., Murtaza, G., Stirling, A. I. and Wainwright, G. H. (1992) Single LED-based dual wavelength referenced optical fibre sensor system using intensity modulation. Optics and Laser Technology, 24, 187.CrossRefGoogle Scholar
  32. 32.
    Wang, A., Miller, M. S., Plante, A. J., Sunther, M. F., Murphy, K. A. and Claus, R. O. (1996) Split-spectrum intensity-based optical fibre sensors for measurement of microdisplacement, strain and pressure. Applied Optics, 35, 2995–2601.Google Scholar
  33. 33.
    Hogg, W. D., Turner, R. D. and Measures, R. M. (1989) Polarimetric fibre optic structural strain sensor characterisation. SPIE, 1170, Fibre Optic Structures and Skins II, pp. 542–549.Google Scholar
  34. 34.
    Zheng, G., Campbell, M. C., Wallace, P. A. and Holmes-Smith, A. S. (1996) Configurations of remote birefringent fibre strain sensors using a frequency modulation continuous wave technique. Proc. Appl. Opt. Div. Conf. Grattan, K. T. V. (ed.) Reading, pp. 380–385.Google Scholar
  35. 35.
    Meltz, G. and Dunphy, J. R. (1985) Fibre optic sensor for the non-destructive evaluation of composite materials. Proc. SPIE Symposium on Fibre Optics and Laser Sensors, Bellingham, WA, SPIE, 566, 243–248.Google Scholar
  36. 36.
    Waite, S. R., Tatam, R. P. and Jackson, D. A. (1988) Use of optical fibre for damage and strain detection in composite materials. Composites, 19 (6), 435–442.CrossRefGoogle Scholar
  37. 37.
    Layton, M. R. and Bucaro, J. A. (1979) Optical fibre acoustic sensor utilizing mode-mode interference. Applied Optics, 18 (5), 666–670.CrossRefGoogle Scholar
  38. 38.
    Murphy, K. A., Miller, M. S., Vengsarkar, A. M. and Claus, R. O. (1990) Elliptical-core two-mode optical fibre sensor implementation methods. Journal of Lightwave Technology, 8 (11), 1688–1696.CrossRefGoogle Scholar
  39. 39.
    Measures, R. M. (1993) Fibre optic sensing for composite structures. Composites Engineering, 3 (7–8), 715–750.CrossRefGoogle Scholar
  40. 40.
    Bennett, K. D. and O’Brien, N. F. (1992) Optimal detection schemes for dual mode fibre sensor signals. Proc. Fibre Optic Sensor-Based Smart Materials and Structures Workshop, Blacksburg, VA, pp. 61–66.Google Scholar
  41. 41.
    Jackson, D. A. and Jones, J. D. C. (1986) Fibre optic sensors. Optica Acta, 33, 1469–1503.CrossRefGoogle Scholar
  42. 42.
    Valis, T., Tapnese, E. and Measures, R. M. (1989) Localised fibre optic strain sensors embedded in composite materials. SPIE, 1170, 495–503.CrossRefGoogle Scholar
  43. 43.
    Liu, K., Ferguson, S. M. and Measures, R. M. (1989) Damage detection in composites with embedded fibre optic interferometric sensors. SPIE, 1170, 205–210.CrossRefGoogle Scholar
  44. 44.
    Liu, K., Ferguson, S. M., McEwen, K., Tapanese, E. and Measures, R. M. (1990) Acoustic emission detection for composites using embedded ordinary single-mode fibre optic interferometric sensors. SPIE, 1370, 316–323.CrossRefGoogle Scholar
  45. 45.
    Zheng, S. X., McBride, R., Barton, J. S., Jones, J. D. C., Hale, K. F. and Jones, B. E. (1992) Intrinsic optical fibre sensor for monitoring acoustic emission. Sensors and Actuators. A. Physical, 31(1–3) Pt. 3, 110–114.Google Scholar
  46. 46.
    Lee, C. E., Gibier, W. N., Atkins, R. A. and Taylor, H. F. (1992) In-line fibre Fabry-Perot interferometer with high reflectance internal mirrors. Journal of Lightwave Technology, 10 (10), 1376–1379.CrossRefGoogle Scholar
  47. 47.
    Valis, T., Hogg, D. and Measures, R. M. (1990) Composite material embedded fibre optic Fabry-Perot strain rosette. Spie, 1370, 154–161.CrossRefGoogle Scholar
  48. 48.
    Friebele, E. J., Putnam, M. A., Kersey, A. D., Greenblatt, A. S., Ruthven, G. P., Kim, M. H. and Gottschalck, K. S. (1997) Ultrahigh sensitivity strain sensing using fibre cavity etalon. SPIE, 3042, 100–110.CrossRefGoogle Scholar
  49. 49.
    Stone, J. and Marcuse, D. (1986) Ultrahigh finesse fibre Fabry-Perot interferometers. Journal of Lightwave Technology, 4, 382–385.CrossRefGoogle Scholar
  50. 50.
    Kidd, S. R., Sinha, P. G., Barton, J. S. and Jones, J. D. C. (1993) Wind tunnel evaluation of novel interferometric optical fibre heat transfer gauges. Measurement Science and Technology, 4, 362–368.CrossRefGoogle Scholar
  51. 51.
    Dorighi, J. F., Krishnaswamy, S. and Achenbach, J. D. (1995) Stabilisation of an embedded fibre optic Fabry-Perot sensor for ultrasound detection. IEEE Transactions on Ultrasonics, and Frequency Control, 42 (5), 820–824.CrossRefGoogle Scholar
  52. 52.
    Atkins, R. A., Gardner, J. H., Gibier, W. N., Lee, C. E., Oakland, M. D., Spears, M. O., Swenson, V. P., Taylor, H. F., McCoy, J. and Beshouri, G. (1994) Fibre-optic pressure sensor for internal combustion engines. Applied Optics, 33, 1315–1320.CrossRefGoogle Scholar
  53. 53.
    Sirkis, J., Berkoff, T. A., Jones, R. T., Singh, H., Kersey, A. D., Friebele, E. J. and Putman, M. A. (1995) In-line fibre etalon (ILFE) fibre-optic strain sensors. Journal of Lightwave Technology, 13 (7), 1256–1263.CrossRefGoogle Scholar
  54. 54.
    Bhatia, V., Murphy, K. A., Clause, R. O., Jones, M. E., Grace, J. L., Tran, T. A. and Greene, J. A. (1995) Multiple strain state measurements using conventional and absolute optical fibre-based extrinsic Fabry-Perot interferometric strain sensors. Journal of Smart Materials and Structures, 4, 240–245.CrossRefGoogle Scholar
  55. 55.
    Bellivelli, C. and Duplain, G. (1993) White-light interferometric multimode fibre-optic strain sensor. Optics Letters, 18 (1), 78–80.CrossRefGoogle Scholar
  56. 56.
    Liu, T. D., Brooks, A., Martin, R., Badcock, R. B. and Fernando, G. F. (1997) A multi-mode extrinsic Fabry-Perot interferometric strain sensor. Journal of Smart Materials and Structures, 6, 464–469.CrossRefGoogle Scholar
  57. 57.
    Narendran, N. and Weiss, J. (1996) Fibre-optic strain and temperature sensors for power plant applications. SPIE, 2594, 149–158.CrossRefGoogle Scholar
  58. 58.
    Bhatia, V., Sen, M. B., Murphy, K. A. and Claus, R. O. (1996) White light interferometry for highly sensitive strain and temperature measurements. Proc. 11th Int. Conf. on Optical Fibre Sensors, Saporro, Japan, pp. 308–311.Google Scholar
  59. 59.
    Gunderson, L. C. (1990) Fibre optic sensor applications using Fabry-Perot interferometry. SPIE, 1267, Fibre Optic Sensors IV, pp. 194–204.Google Scholar
  60. 60.
    Beard, P. C. and Mills, T. N. (1997) Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer. Electronics Letters, 33 (9), 801–803.CrossRefGoogle Scholar
  61. 61.
    Lawrence, C. M., Nelson, D. V., Spingarn, J. R. and Bennet, T. E. (1996) Measurement of process-induced strain in composite materials using embedded fibre optic sensors. SPIE, 2718, 60–68.CrossRefGoogle Scholar
  62. 62.
    Vries, M. D., Nasta, M., Bhatia, V., Tran, T., Greene, J. and Claus, R. O. (1995) Performance of embedded short-gauge-length optical fibre sensors in a fatigue-loaded reinforced concrete specimen. Journal of Smart Materials and Structures, 4, A107–113.CrossRefGoogle Scholar
  63. 63.
    Liu, T., Brooks, D., Martin, A., Badcock, R. and Fernando, G. F. (1996) Design, fabrication and evaluation of an optical fibre sensor for tensile and compressive strain measurements via the use of white light interferometry. SPIE, 2718, 408–416.CrossRefGoogle Scholar
  64. 64.
    Hill, K. O., Fujii, Y., Johnson, D. C. and Kawasaki, B. S. (1978) Photosensitivity in optical fibre waveguides: Application to reflection filter fabrication. Applied Physics Letters, 32, 647.CrossRefGoogle Scholar
  65. 65.
    Hand, D. P. and Russell, R. St. J. (1990) Photoinduced refractive index changes in germanosilicate fibres. Optics Letters, 15, 102.CrossRefGoogle Scholar
  66. 66.
    Lemaire, P. L., Atkins, R. M., Mizrahi, V. and Reed, W. A. (1993) High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in Ge02-doped optical fibres. Electronics Letters, 29, 1191.CrossRefGoogle Scholar
  67. 67.
    Askins, C. G., Tsai, T.-E., Williams, G. M., Putnam, M. A., Bashkansky, M. and Friebele, E. J. (1992) Fibre Optic Sensor-Based Smart Materials and Structures. R. O. Claus (ed.), ‘OP Publishing, Bristol, Philadelphia, PA, pp. 85–88.Google Scholar
  68. 68.
    Dianov, E. M., Starodubov, D. S. and Frolov, A. A. (1996) UV argon laser induced luminescence changes in germanosilicate fibre preforms. Electronics Letters, 32 (3), 246–247.CrossRefGoogle Scholar
  69. 69.
    Starodubov, D. S., Grubsky, V., Feinberg, J. and Erdogan, T. (1997) Near-UV fabrication of ultrastrong Bragg gratings in hydrogen-loaded germanosilicate fibres. CLEO’97 Tech. Dig., Post-deadline paper CPD-24.Google Scholar
  70. 70.
    Starodubov, D. S., Grubsky, V. and Feinberg, J. (1997) Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light. Electronics Letters, 33, 1131–1332.CrossRefGoogle Scholar
  71. 71.
    Meltz, G., Morey, W. W. and Glenn, W. H. (1989) Formation of Bragg gratings in optical fibre by a transverse holographic method. Optics Letters, 14, 823.CrossRefGoogle Scholar
  72. 72.
    Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C. and Albert, J. (1993) Bragg grating fabricated in monomode photosensitive optical fibre by UV exposure through a phase mask. Applied Physics Letters, 62, 1035–1037.CrossRefGoogle Scholar
  73. 73.
    Morey, W. W., Meltz, G. and Glenn, W. H. (1989) Fibre optic Bragg grating sensors. SPIE, 1169, Fibre Optic and Laser Sensors VII, pp. 98–107.Google Scholar
  74. 74.
    Simonsen, H. D., Paetsch, R. and Dunphy, J. R. (1992) Fibre Bragg grating sensor demonstration in a glass-fibre reinforced polyester composite. Proc. 1st European Conference on Smart Structures and Materials, Glasgow, pp. 73–76.Google Scholar
  75. 75.
    Davis, M. A., Bellemore, D. G., Kersey, A. D., Putam, M. A., Friebele, E. J., Idriss, R. L. and Kodindouma, M. B. (1996) High-sensor-count Bragg grating instrumentation system for large-scale structural monitoring applications. SPIE, 2718, 303–309.CrossRefGoogle Scholar
  76. 76.
    Kersey, A. D., Berkoff, T. A. and Morey, W. W. (1992) Fibre-grating based strain sensor with phase sensitive detection. Proc. 1st European Conf. on Smart Structures and Materials, Glasgow, pp. 61–67.Google Scholar
  77. 77.
    Vengsarkar, A. M., Lemaire, P. J., Judkins, J. B., Bhatia, V., Sipe, J. E. and Ergodan, T. E. (1995) Long-period fibre gratings as band-rejection filters. Proc. Conf. on Optical Fibre Communications, Post-deadline Paper PD4–2.Google Scholar
  78. 78.
    Bhatia, V., D’Alberto, T., Murphy, K. A. and Claus, R. O. (1996) Comparison of optical fibre long-period and Bragg grating sensors. SPIE, 2718, 110–121.CrossRefGoogle Scholar
  79. 79.
    Johnson, M. and Ulrich, R. (1978) Fibre-optical strain gauges. Electronics Letters, 14 (14), 432.CrossRefGoogle Scholar
  80. 80.
    Kashyap, R. and Reeve, M. H. (1980) Single-ended fibre strain and length measurement in frequency domain. Electronics Letters, 16 (18), 2867–2869.CrossRefGoogle Scholar
  81. 81.
    Zimmermann, B. D., Thomas, D. D. and Claus, R. O. (1990) Recent progress in high resolution optical fibre time domain methods and its impact on dynamic environment sensing applications. SPIE, 1370, Fibre Optic Smart Structures and Skins III, San Jose, CA, pp. 197–204.Google Scholar
  82. 82.
    Arjyal, B., Paipetis, A. and Galliotis, C. (1996) Stress/strain measurements in advanced composites using remote laser Raman microscopy. Nondestructive Testing and Evaluation, 12, 355–366.CrossRefGoogle Scholar
  83. 83.
    Galiotis, C. (1993) Study of mechanisms of stress transfer in continuous and discontinuous-fiber model composites by laser Raman spectroscopy. Composite Science Technology, 48 (1–4), 15–28.CrossRefGoogle Scholar
  84. 84.
    Inaudi, D., Elamari, A., Pflug, L., Gisin, N., Breguet, J. and Vurpillot, S. (1994) Low-coherence deformation sensors for the monitoring of civil engineering structures. Sensors and Actuators A, 44, 125–130.CrossRefGoogle Scholar
  85. 85.
    Fan, N. Y., Huang, S. Y., and Measures, R. M. (1997) Localised long-gaugelength fibre optic sensor demodulated with wavelength tuning technique. SPIE, 3042, 366–371.CrossRefGoogle Scholar
  86. 86.
    Sirkis, J. S. and Lo, Y. L. (1994) Simultaneous measurement of two strain components using 3X3 and 2X2 coupler-based passive demodulation of optical fibre sensors. Journal of Lightwave Technology, 12 (12), 2153–2161.CrossRefGoogle Scholar
  87. 87.
    Carman, G. P., Lesco, J. J., Case, S. W., Fos, B. and Claus, R. O. (1992) Development of an embedded Fabry-Perot fibre optic strain rosette sensor (FP-FOSRS). Proc. Fibre Optic Sensor-Based Smart Materials and Structures Workshop, Blacksburg, VA, pp. 45–50.Google Scholar
  88. 88.
    Udd, E., Nelson, D. V., Lawrence, C. M. and Ferguson, B. A. (1996) Three-axis strain and temperature fibre optic grating sensor. SPIE, 2718, 104–109.CrossRefGoogle Scholar
  89. 89.
    Udd, E., Lawrence, C. M. and Nelson, D. V. (1997) Development of a three-axis strain and temperature fibre optic grating sensor. SPIE, 3042, 229–236.CrossRefGoogle Scholar
  90. 90.
    Healy, P. (1986) Instrumentation principles for optical time domain reflectometry. Journal of Physics, E: Science Institute, 19, 334–341.Google Scholar
  91. 91.
    Dakin, J. P. (1989) Distributed optical fibre sensor systems. Optical Fibre Sensors: Systems and Applications, Vol. 2, B. Culshaw and J. Dakin (eds), Artech House, London, pp. 575–598.Google Scholar
  92. 92.
    Rogers, A. J. (1980) Polarisation optical time domain reflectometry. Electronics Letters, 16, 489–490.CrossRefGoogle Scholar
  93. 93.
    Horiguchi, T., Kurashima, T. and Tateda, M. (1989) Tensile strain dependence of Brillouin frequency dependency shift in silica optical fibres. IEEE Photon Technology Letters, 1, 107–108.CrossRefGoogle Scholar
  94. 94.
    Horiguchi, T., Kurashima, T. and Tateda, M. (1990) A technique to measure distributed strain in optical fibers. IEEE Photon Technology Letters, 2, 352–354.CrossRefGoogle Scholar
  95. 95.
    Kurashima, T., Horiguchi, T., Yoshizawa, N., Tada, H. and Tateda, M. (1991) Measurement of distributed strain due to laying and recovery of submarine optical fibre cable. Applied Optics, 30 (3), 334–337.CrossRefGoogle Scholar
  96. 96.
    Bao, X., Webb, D. J. and Jackson, D. A. (1995) Recent progress in distributed fibre optic sensors based upon Brillouin scattering. SPIE, 2507, Proc. Distributed and Multiplexed Fibre Optic Sensors V, Munich, pp. 175–185.Google Scholar
  97. 97.
    Parker, T. R., Farhadiroushan, M., Handerek, V. A. and Rogers, A. J. (1997) A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter. IEEE Photon Technology Letters, 9 (7), 979–981.CrossRefGoogle Scholar
  98. 98.
    Kersey, A. D. (1995) Fibre optic sensor multiplexing techniques, in Fibre Optic Smart Structures, E. Udd (ed.) Wiley, New York.Google Scholar
  99. 99.
    Koch, A. and Ulrich, R. (1990) Displacement sensor with electronically scanned white-light interferometer. Fibre Optic Sensors IV, R. T. Kersten (ed.), Proc. Soc. Photo-Optical Instrumentation Engineers, 1267, 126–133.Google Scholar
  100. 100.
    Davis, M. A., Bellemore, D. G., Putam, M. A. and Kersey, A. D. (1996) A 60 element fibre Bragg grating sensor system. Proc. 11th Int. Conf. on Optical Fibre Sensors, Sapporo, Japan, IEICE and IEEJ, pp. 100–103.Google Scholar
  101. 101.
    Jones, R. T., Berkoff, T. A., Bellemore, D. G., Early, D. A., Sirkis, J. S., Putnam, M. A., Friebele, E. J. and Kersey, A. D. (1996) Cantilever-plate-deformation monitoring using wavelength-division multiplexed fibre Bragg grating sensors, SPIE, 2718, 258–268.CrossRefGoogle Scholar
  102. 102.
    Kersey, A. D., Davis, M. A., Berkoff, T. A., Dandridge, A., Jones, R. T., Tsai, T., Cogdell, G., Wang, G., Haysgaard, G. B., Pran, K. and Knudsen, S. (1997) Transient load monitoring on a composite hull ship using distributed fibre optic Bragg grating sensors. SPIE, 3042, 421–430.CrossRefGoogle Scholar
  103. 103.
    Rao, Y. J., Lobo-Ribeiro, A. B., Jackson, D. A., Zhang, L. and Bennion, I. (1995) Combined spatial-and time-division-multiplexing scheme for fibre grating sensors with drift-compensated phase-sensitive detection. Optics Letters, 20 (20), 2149–2151.CrossRefGoogle Scholar
  104. 104.
    Sirkis, J. S. (1993) Unified approach to phase-strain-temperature models for smart structure interferometric optical fibre sensors. Part 1. Development. Optical Engineering, 32 (4), 752–761.CrossRefGoogle Scholar
  105. 105.
    Sirkis, J. (1993) Unified approach to phase-strain-temperature models for smart structure interferometric optical fibre sensors. Part 2. Applications. Optical Engineering, 32 (4), 762–773.CrossRefGoogle Scholar
  106. 106.
    Hannah, J. and Hiller, M. J. (1978) Applied Mechanics. Pitman, London.Google Scholar
  107. 107.
    Doyle, C. and Fernando, G. F. (1997) Condition monitoring engineering materials with an optical fibre vibration sensor system. SPIE, 3042, 310–318.CrossRefGoogle Scholar
  108. 108.
    Spillman, W. B. Jr., Kiln, B. R., Maurice, L. B. and Fuhr, P. L. (1989) Statistical-mode sensor for fibre optic vibration sensing uses. Applied Optics, 28 (15), 3166–3176.CrossRefGoogle Scholar
  109. 109.
    Murphy, K. A., Fogg, B. R. and Claus, R. O. (1992) Spatially weighted fibre optic sensors for smart materials and structures. Active materials and adaptive structures. Proc. ADPA/AIAA/ASME/SPIE, Alexandria, VA, G. J. Knowles (ed.), IOP Publishing, Bristol, Philadelphia, PA, pp. 43–46.Google Scholar
  110. 110.
    Murphy, K. A., Miller, W. V. III, Vensarkar, A. M. and Claus, R. O. (1989) Surface acoustic wave detection using Michelson-type fibre optic interferometer. Proc. Fibre Optic Smart Structures and Skins II, SPIE, 1170, 558–565.CrossRefGoogle Scholar
  111. 111.
    Measures, R. (1991) The detection of damage and the measurement of strain within composites by means of embedded optical fibre sensors. Review of Progress in Quantitative Nondestructive Evaluation, 10B, 1247–1258.Google Scholar
  112. 112.
    Doyle, C., Hayes, S., Martin, A., Liu, T., Wu, M. and Fernando, G. (1996) Intensity-based optical sensors for composite health monitoring. Fibre Optic Sensors V, SPIE, 2895, 288–299.CrossRefGoogle Scholar
  113. 113.
    Martin, A. R. (1997) PhD Thesis, Material Engineering, Brunel University.Google Scholar
  114. 114.
    Chang, C. C. and Sirkis, J. S. (1995) Optical fibre sensors embedded in composite panels for impact damage detection. SPIE, 2444, 502–513.CrossRefGoogle Scholar
  115. 115.
    Jones, T. R., Sirkis, J. S., Friebele, E. J. and Kersey, A. D. (1995) Location and magnitude of impact detection in composite plates using neural networks. SPIE, 2444, 469–480.CrossRefGoogle Scholar
  116. 116.
    Spillman, W. B. and Fuhr, P. (1990) Impact detection system for smart skin applications. SPIE, 1370, 308–315.CrossRefGoogle Scholar
  117. 117.
    Fuhr, P. (1994) Single-fibre simultaneous vibration sensing and impact detection for large space structures. Journal of Smart Materials and Structures, 3, 124–128.CrossRefGoogle Scholar
  118. 118.
    Fan, N. Y., Huang, S. Y., Alavie, A. T. and Measures, R. M. (1995) Rare earth dope fibre for structural damage assessment. Journal of Smart Materials and Structures, 4, 179–185.CrossRefGoogle Scholar
  119. 119.
    Noharret, B., Chazelas, J., Bonniau, P., Lecuellet, J. and Turpin, M. (1995) Impact detection on airborne multi-layered structures. SPIE, 2444, 460–468.CrossRefGoogle Scholar
  120. 120.
    Bonniau, P., Chazelas, J., Lecuellet, J., Gendue, F., Turpin, M., Peasant, J. P. Le and Bressignon, M. (1991) Damage detection in woven composite materials using embedded fibre optics. SPIE, 1588, Fibre Optic Smart Structures and Skins IV, pp. 52–63.Google Scholar
  121. 121.
    Greene, J. A., Tran, T. A., Bhatia, V., Gunther, M. F., Wang, A., Murphy, K. A. and Claus, R. O. (1995) Optical fibre sensing technique for impact detection and location in composites and metal specimens. Journal of Smart Materials and Structures, 4, 93–99.CrossRefGoogle Scholar
  122. 122.
    Liu, K., Ferguson, S. M., McEwen, K., Tapanese, E. and Measures, R. M. (1990) Acoustic emission detection for composite using embedded ordinary single-mode fibre optic interferometric sensors. SPIE, 1370, Fibre Optic Smart Structures and Skins III, pp. 316–323.Google Scholar
  123. 123.
    Waite, S. R. (1990) Use of embedded optical fibre for early fatigue damage detection in composite materials. Composites, 21 (2), 148–153.CrossRefGoogle Scholar
  124. 124.
    Yaniv, G., Zimmermann, B. and Lou, K. A. (1993) Development of an optical fibre time domain sensor for monitoring static and fatigue strains in composite laminates. SPIE, 1918, 377–387.CrossRefGoogle Scholar
  125. 125.
    Levin, K. and Nilsson, S. (1996) Examination of reliability of fibre optic sensors embedded in carbon/epoxy composites. Proc. Third ICIM/ECSSM, Lyon, pp. 222–229.Google Scholar
  126. 126.
    Liu, T., Fernando, G. F., Rao, Y. J., Jackson, D. A., Zhang, L. and Bennion, I. (1996) In-situ strain measurements in composites during fatigue testing using optical fibre Bragg gratings and a portable CCD detection system. SPIE, 2895, 249–257.Google Scholar
  127. 127.
    Guemes, A. and Menendez, J. M. (1996) Fatigue strength of glass reinforced polyester (GRP) laminates with embedded optical fibres. SPIE, 2779, 217–221.CrossRefGoogle Scholar
  128. 128.
    Fernando, G. F. (1989) PhD Thesis, University of Bath.Google Scholar
  129. 129.
    Xu, M. G., Archambault, J.-L., Reekie, L. and Dakin, J. P. (1994) Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors. Electronics Letters, 30, 1085–1087.CrossRefGoogle Scholar
  130. 130.
    Brady, G. P., Kalli, K., Webb, D. J., Jackson, D. A., Zhang, D. A. and Bennion, I. (1994) Recent developments in optical fibre Bragg gratings. SPIE, 2839, 8–19.CrossRefGoogle Scholar
  131. 131.
    Kanellopoulos, S. E., Handerek, V. A. and Rogers, A. J. (1995) Simultaneous strain and temperature sensing with photogenerated in-fibre gratings. Optics Letters, 20 (3), 333–335.CrossRefGoogle Scholar
  132. 132.
    James, S. W., Dockney, M. L. and Tatam, R. P. (1996) Independent measurement of temperature and strain using in fibre Bragg grating sensors. Proc. 11th Int. Conf. Optical Fibre Sensors, Sapporo, Japan, FR3–3, pp. 10–13.Google Scholar
  133. 133.
    Singh, H. and Sirkis, J. (1996) Simultaneous measurement of strain and temperature using optical fibre sensors: two novel configurations. Proc. 11th Int. Conf. Optical Fibre Sensors, Sapporo, Japan, pp. 108–111.Google Scholar
  134. 134.
    Jin, X. D. and Sirkis, J. (1997) Optical fibre sensors for simultaneous measurement of strain and temperature. SPIE, 3042, 120–127.CrossRefGoogle Scholar
  135. 135.
    Ferreira, L. A., Lobo-Ribeiro, A. B., Santos, J. L. and Farahi, F. (1996) Simultaneous measurement of displacement and temperature using a low finesse cavity and a fibre Bragg grating. IEEE Photon Technology Letters, 8 (11), 1519–1521.CrossRefGoogle Scholar
  136. 136.
    Patrick, H., Williams, G. M., Kersey, A. D., Pedrazzani, J. R. and Vengsarkar, A. M. (1996) Hybrid fibre Bragg grating/long period fibre grating sensor for strain/temperature discrimination. IEEE Photon Technology Letters, 8 (9), 1223–1225.CrossRefGoogle Scholar
  137. 137.
    Bhatia, V., Murphy, K. A. and Claus, R. O. (1996) Simultaneous measurement systems employing long period grating sensors. Proc. 11th. Int. Conf. Optical Fibre Sensors, Sapporo, Japan, pp. 702–705.Google Scholar
  138. 138.
    Farahi, F., Webb, D. J., Jones, J. D. C. and Jackson, D. A. (1990) Simultaneous measurement of temperature and strain: cross-sensitivity considerations. Journal of Lightwave Technology, 8, 138–142.CrossRefGoogle Scholar
  139. 139.
    Vengsarkar, A. M., Michie, W. C., Jaankovic, L., Culshaw, B. and Claus, R. O. (1994) Fibre-optic dual-technique sensor for simultaneous measurement of strain and temperature. Journal of Lightwave Technology, 12, 170–177.CrossRefGoogle Scholar
  140. 140.
    Luke, D. G., McBride, R., Lloyd, P., Burnett, J. G., Greenaway, A. H. and Jones, J. D. C. (1996) Strain and temperature measurements in composite-embedded highly birefringent optical fibre using mean and differential group delay. Proc. 11th Mt. Conf. Optical Fibre Sensors, Sapporo, Japan, pp. 200–203.Google Scholar
  141. 141.
    Davis, M. A. and Kersey, A. D. (1996) Separating the temperature and strain effects on fibre Bragg grating sensors using stimulated Brillouin scattering. SPIE, 2718, 270–278.CrossRefGoogle Scholar
  142. 142.
    Liu, T., Fernando, G. F., Rao, Y. J., Jackson, D. A., Zhang, L. and Bennion, I. (1997) Simultaneous strain and temperature measurements in composite using a multiplexed fibre Bragg grating sensor and an extrinsic Fabry-Perot sensor. SPIE, 3042, 203–212.CrossRefGoogle Scholar
  143. 143.
    Liu, T., Fernando, G. F., Zhang, L., Bennion, I., Rao, Y. and Jackson, D. A. (1997) Simultaneous strain and temperature measurement. Proc. 12th Int. Conf. on Optical Fibre Sensors, Washington, DC, pp. 40–43.Google Scholar
  144. 144.
    Xie, W. X., Douay, M., Bernage, P., Niay, P., Bayon, J. F. and Georges, T. (1993) Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres. Optics Communications, 10 (1/2), 85–91.CrossRefGoogle Scholar
  145. 145.
    Kalli, K. et al. (1994) Possible approach for the simultaneous measurement of temperature and via first and second order diffraction from Bragg grating sensors. OFS’94, Glasgow, post-deadline paper.Google Scholar
  146. 146.
    Kanellopoulos, S. E., Handerek, V. A. and Rogers, A. J. (1992) Photoinduced polarisation couplers in elliptical core optical fibres written using 532 nm and 266 nm sources. Electronics Letters, 28 (6), 1558–1560.CrossRefGoogle Scholar
  147. 147.
    Kanellopoulos, S. E., Handerek, V. A. and Rogers, A. J. (1994) Simultaneous strain and temperature sensing employing a photogenerated polarisation coupler and low-order modes in an elliptically cored optical fibre. Electronics Letters, 30 (21), 1786–1787.CrossRefGoogle Scholar
  148. 148.
    Wang, A., Wang, G. Z. and Claus, R. O. (1995) Two-mode elliptical core fibre sensors for strain and temperature measurement. Journal of Smart Materials and Structures, 4, 42–49.CrossRefGoogle Scholar
  149. 149.
    Flavin, D. A., McBridge, R., Jones, J. D. C., Burnett, J. G. and Greenaway, A. H. (1994) Combined temperature and strain measurement with a dispersive Fourier-transform spectrometer. Optics Letters, 19 (24), 2167–2169.CrossRefGoogle Scholar
  150. 150.
    Flavin, D. A., McBride, R. and Jones, J. D. C. (1995) Interferometric fibre-optic sensing based on the modulation of group delay and first order dispersion: application to strain—temperature measurand. Journal of Lightwave Technology, 13 (7), 1314–1323.CrossRefGoogle Scholar
  151. 151.
    Zhang, F. and Lit, J. W. Y. (1993) Temperature and strain sensitivity measurements of high-birefringent polarisation-maintaining fibres. Applied Optics, 32 (13), 2213–2218.CrossRefGoogle Scholar
  152. 152.
    Martens, H. and Naes, T. (1989) Multivariate Calibration, Wiley, Chichester.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • T. Liu
  • G. F. Fernando

There are no affiliations available

Personalised recommendations