Advertisement

Fiber optic sensors in concrete structures: a review

  • C. I. Merzbacher
  • A. D. Kersey
  • E. J. Friebele
Chapter
Part of the Optoelectronics, Imaging and Sensing Series book series (OISS, volume 3)

Abstract

The overall deterioration of the national civil infrastructure due to aging and usage beyond the anticipated loads and lifetimes for which it was designed, combined with the increasing cost of maintenance and repair, has resulted in the need for improved techniques for non-destructive evaluation of the structural health of reinforced concrete. A recent review of the available statistics reveals that almost 40% of United States bridges are ‘structurally deficient’ or ‘functionally obsolete’ [1]. New reinforced concrete constructions would also benefit from in situ structural monitors which could detect a decrease in performance or imminent failure, thereby optimizing lifetimes without compromising safety. Finally, although modeling the behavior of some structures made from well-characterized materials is fairly accurate, the use of new materials, unusually complex designs, or variability in strength-related factors such as void fraction or moisture content can lead to unexpected structural weakening, damage or failure. The inadequacy of the nation’s highways, bridges, etc. prompted the initiation in 1993 of a National Science Foundation program, with the goal of developing new technologies aimed at ‘prolonging the life and enhancing the capacity of our existing and future civil infrastructure systems’ [2]. In response to the increased need, various techniques are being developed, and some of the most promising are based on the use of fiber optic sensors (FOS).

Keywords

Concrete Structure Fiber Sensor Fiber Optic Sensor Strain Sensor Smart Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dunker, K. F. and Rabbat, B. G. (1993) Why America’s bridges are crumbling. Sci. Am., March, 66–72.Google Scholar
  2. 2.
    Liu, S. C., Chong, K. P. and Singh, M. P. (1994) Civil infrastructure systems research: hazard mitigation and intelligent material systems. Smart Mater. Struct., 3, A169 — A174.Google Scholar
  3. 3.
    Méndez, A., Morse, T. F. and Méndez, F. (1989) Applications of embedded optical fiber sensors in reinforced concrete buildings and structures. Fiber Optic Smart Structures and Skins II, SPIE, 1170 ( SPIE, Bellingham, WA ), pp. 60–69.Google Scholar
  4. 4.
    Méndez, A. and Morse, T. F. (1992) Overview of optical fiber sensors embedded in concrete. Fiber Optic Smart Structures and Skins V (Boston, MA, 1992), SPIE, 1798 ( SPIE, Bellingham, WA ), pp. 205–216.Google Scholar
  5. 5.
    Measures, R. (1992) Smart structures — a revolution in civil engineering. Advanced Composite Materials in Bridges and Structures (K. W. Neale and P. Labossiere, eds), Canadian Society for Civil Engineering, Montreal, pp. 31–59.Google Scholar
  6. 6.
    Mendez, A., Morse, T. F. and Reinhart, L. J. (1993) Experimental results on embedded optical fiber sensors in concrete. Smart Structures and Materials Conference (Albuquerque, NM, 1993), SPIE, 1918 ( SPIE, Bellingham, WA ), pp. 420–427.Google Scholar
  7. 7.
    Nanni, A., Yang, C. C., Pan, K., Wang, J.-S. and Michael, R. R. Jr. (1991) Fiber-optic sensors for concrete strain/stress measurement. ACI Mater. J., 88, 257–264.Google Scholar
  8. 8.
    Grattan, K. T. V. and Meggitt, B. T. (1995) Optical Fiber Sensor Technology. Chapman and Hall, London, 499 pp.Google Scholar
  9. 9.
    Inaudi, D., Elamari, A. and Vurpillot, S. (1994) Low coherence interferometry for the monitoring of civil engineering structures. Proceedings 2nd European Conference on Smart Structures and Materials (Glasgow, 1994), pp. 216–219.Google Scholar
  10. 10.
    Inaudi, D., Vulliet, L., Pflug, L., Vurpillot, S. and Wyser, A. (1995) Low-coherence sensors for the monitoring of underground works. Smart Sensing, Processing, and Instrumentation (San Diego, CA, 1995) SPIE, 2444 ( SPIE, Bellingham, WA ), pp. 170–178.Google Scholar
  11. 11.
    Sirkis, J. S., Brennan, D. D., Putnam, M. A., Berkoff, T. A., Kersey, A. D. and Friebele, E. J. (1993) In-line fiber etalon for strain measurement. Opt. Lett., 18, 1973–1975.CrossRefGoogle Scholar
  12. 12.
    Meltz, G., Morey, W. W. and Glenn, W. H. (1989) Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett., 14, 823–825.CrossRefGoogle Scholar
  13. 13.
    Escobar, P., Gusmeroli, V., Martinelli, M., Lanciani, I. and Morabito, P. (1992) Fiber-optic interferometric sensors for concrete structures. Proceedings 1st European Conference on Smart Structures and Materials (Glasgow, 1992), pp. 215–218.Google Scholar
  14. 14.
    Habel, W. R. and Polster, H. (1995) The influence of cementitious building materials on polymeric surfaces of embedded optical fibers for sensors. J. Lightwave Technol., 13, 1324–1330.CrossRefGoogle Scholar
  15. 15.
    Habel, W. R., Höpcke, M., Basedau, F. and Polster, H. (1994) The influence of concrete and alkaline solutions on different surfaces of optical fibres for sensors. Proceedings 2nd European Conference on Smart Structures and Materials (Glasgow, 1994), pp. 168–171.Google Scholar
  16. 16.
    Habel, W. R. and Hillemeier, B. (1995) Results in monitoring and assessment of damage in large steel and concrete structures by means of fiber optic sensors. Smart Structures and Materials (San Diego, CA, 1995), SPIE, 2446, ( SPIE, Bellingham, WA ), pp. 25–36.Google Scholar
  17. 17.
    Sennhauser, U., Bronnimann, R. and Nellen, P. M. (1996) Reliability modelling and testing of optical fiber Bragg sensors for strain measurements. Fiber Optic and Laser Sensors XIV, (Denver, CO, 1996) SPIE, 2839 ( SPIE, Bellingham, WA ), pp. 64–75.Google Scholar
  18. 18.
    Inaudi, D., Casanova, N., Kronenberg, P., Marazzi, S. and Vurpillot, S. (1997) Embedded and surface-mounted fiber optic sensors for civil structural monitoring. Industrial and Commercial Applications of Smart Structures Technologies, SPIE, 3044 ( SPIE, Bellingham, WA ), pp. 236–243.Google Scholar
  19. 19.
    Huston, D. R., Fuhr, P. L., Ambrose, T. P. and Barker, D. A. (1994) Intelligent civil structures–activities in Vermont. Smart Mater. Struct., 3, 129–139.CrossRefGoogle Scholar
  20. 20.
    Fuhr, P. L., Huston, D. R., Kajenski, P. J. and Ambrose, T. P. (1992) Performance and health monitoring of the Stafford Medical Building using embedded sensors. Smart Mater. Struct., 1, 63–68.CrossRefGoogle Scholar
  21. 21.
    Ambrose, T. P., Huston, D. R. and Fuhr, P. L. (1992) Lessons learned in embedding fiber sensors into large civil structures. Fiber Optic Smart Structures and Skins V (Boston, MA, 1992), SPIE, 1798 ( SPIE, Bellingham, WA ), pp. 194–199.Google Scholar
  22. 22.
    Hendrick, R. O., Shadaram, M., Nazarian, S. and Picornell, M. (1992) Measuring stress distribution in pavements using single-mode fiber. Fiber Optic Smart Structures and Skins V (Boston, MA, 1992), SPIE, 1798, ( SPIE, Bellingham, WA ), pp. 200–204.Google Scholar
  23. 23.
    Pope, C. E., Wu, S.-P., Chuang, S. L., Calero, J. and Murtha, J. (1992) An integrated fiber optic strain sensor. Optical Design and Processing Technologies and Applications, SPIE, 1779 ( SPIE, Bellingham, WA ), pp. 113–121.Google Scholar
  24. 24.
    Prohaska, J. D., Snitzer, E., Chen, B., Maher, M. H., Nawy, E. G. and Morey, W. W. (1992) Fiber optic Bragg grating strain sensor in large-scale concrete structures. Fiber Optic Smart Structures and Skins V (Boston, MA, 1992), SPIE, 1798 ( SPIE, Bellingham, WA ), pp. 286–294.Google Scholar
  25. 25.
    Claus, R. O., de Vries, M., Nasta, M., Murphy, K. A. and Masri, S. F. (1993) Optical fiber sensors for the quantitative measurement of reinforced concrete structures. Experiments in Smart Materials and Structures, AMD, 181 ( ASME, New York ), pp. 97–101.Google Scholar
  26. 26.
    Fuhr, P. L., Huston, D. R., Ambrose, T. P. and Snyder, D. M. (1993) Stress monitoring of concrete using embedded optical fiber sensors. J. Struct. Eng., 119, 2263–2269.CrossRefGoogle Scholar
  27. 27.
    Maher, M. H. and Nawy, E. G. (1993) Evaluation of fiber optic Bragg grating strain sensor in high strength concrete beams. Application of Fiber Optic Sensors in Engineering Mechanics (F. Ansari, ed.), ASCE, New York, pp. 120–133.Google Scholar
  28. 28.
    Masri, S. F., Mustafa, M., de Vries, M. J. and Claus, R. O. (1993) Experimental study of embedded fiber-optic strain gauges in concrete structures. Smart Structures and Materials Conference (Albuquerque, NM, 1993), SPIE, 1918 ( SPIE, Bellingham, WA ), pp. 428–434.Google Scholar
  29. 29.
    Calero, J., Wu, S.-P., Pope, C., Chuang, S. L. and Murtha, J. P. (1994) Theory and experiments on birefringent optical fibers embedded in concrete. J. Lightwave Technol., 12, 1081–1090.CrossRefGoogle Scholar
  30. 30.
    Masri, S. F., Agbabian, M. S., Abdel-Ghaffar, A. M., Higazy, M., Claus, R. O. and de Vries, M. J. (1994) Experimental study of embedded fiber-optic strain gauges in concrete structures. J. Eng. Mech., 120, 1696–1717.Google Scholar
  31. 31.
    Guerin, J. J., Lequime, M., Toppani, E., Leygonie, M. and Chauvel, D. (1994) Embedded optical fibre strain gages for civil engineer: Application to concrete monitoring. Proceedings 2nd European Conference on Smart Structures and Materials (Glasgow, 1994), pp. 224–227.Google Scholar
  32. 32.
    Alavie, A. T., Maaskant, R., Ohn, M. M., Rizkalla, S. and Measures, R. M. (1994) Application and characterization of intracore grating sensors in a CFRP prestressed concrete girder. Smart Structures and Materials Conference (Orlando, FL, 1994), SPIE, 2191 ( SPIE, Bellingham, WA ), pp. 103–110.Google Scholar
  33. 33.
    de Vries, M., Nasta, M., Bhatia, V., Tran, T., Greene, J., Claus, R. O. and Masri, S. (1995) Performance of embedded short-gage-length optical fiber sensors in a fatigue-loaded reinforced concrete specimen. Smart Mater. Struct., 4, A107 - A113.CrossRefGoogle Scholar
  34. 34.
    Kim, K. S., Yoo, J. W., Kim, S. K. and Kim, B. Y. (1996) Embedded intrinsic Fabry-Perot optical fiber sensors in the cement concrete structure. Smart Sensing, Processing, and Instrumentation (San Diego, CA, 1996), SPIE, 2718 ( SPIE, Bellingham, WA ), pp. 218–231.Google Scholar
  35. 35.
    Davis, M. A., Bellemore, D. G., Kersey, A. D., Putnam, M. A., Idriss, R. L. and Kodindouma, M. (1996) Fiber optic sensor system for bridge monitoring with both static load and dynamic modal sensing capabilities. Proceedings of Nondestructive Evaluation Techniques for Aging Infrastructure and Manufacturing (Scottsdale, AZ), SPIE, 2946 ( SPIE, Bellingham, WA ), pp. 219–232.Google Scholar
  36. 36.
    Idriss, R. L. and Kodindouma, M. B. (1996) Real-time monitoring of the after fracture response of a multi-girder steel bridge. Proceedings of the 3rd Conference on Nondestructive Evaluation of Civil Structures and Materials (Boulder, CO, 1996), pp. 335–348.Google Scholar
  37. 37.
    Idriss, R. L. and Kodindouma, M. B. (1997) Design and Implementation of an Optical Fiber Monitoring System in a Full-Scale Laboratory Bridge. New Mexico State University, Department of Civil Engineering Report No. 97–02, 78 pp.Google Scholar
  38. 38.
    Gusmeroli, V., Martinelli, M., Barberis, A., Escobar, P. and Morabito, P. (1994) Thermal expansion measurements of a concrete structure by embedded fiber-optic: an effective example of simultaneous strain -temperature detection. Proceedings 2nd European Conference on Smart Structures and Materials (Glasgow, 1994), pp. 220–223.Google Scholar
  39. 39.
    Kersey, A. D., Davis, M. A. and Bellemore, D. G. (1995) Development of fiber sensors for structural monitoring. Non-Destructive Evaluation of Aging Bridges and Highways (Oakland, CA, 1995), SPIE, 2456 ( SPIE, Bellingham, WA ), pp. 262–268.Google Scholar
  40. 40.
    Kodindouma, M. B. and Idriss, R. L. (1996) An integrated sensing system for highway bridge monitoring. Smart Structures and Materials (San Diego, CA, 1996), SPIE, 2719 ( SPIE, Bellingham, WA ), pp. 132–140.Google Scholar
  41. 41.
    Askins, C. G., Putnam, M. A., Patrick, H. J. and Friebele, E. J. (1997) Fiber strength unaffected by on-line writing of single-pulse Bragg gratings. Electron. Lett., 33, 13331334.Google Scholar
  42. 42.
    Nellen, P. M., Bronnimann, R., Sennhauser, U., Askins, C. G. and Putnam, M. A. (1996) Strain measurements on concrete cantilever beam and carbon fiber cable with distributed optical fiber Bragg grating sensors. Opt. Eng., 35, 2570–2577.Google Scholar
  43. 43.
    Nellen, P. M., Anderegg, P., Bronnimann, R. and Sennhauser, U. (1997) Application of fiber optical and resistance strain gauges for long-term surveillance of civil engineering structures. Smart Systems Jro Bridges, Structures, and Highways, SPIE, 3043 ( SPIE, Bellingham, WA ), pp. 77–86.Google Scholar
  44. 44.
    Lou, K.-A., Yaniv, G., Hardtmann, D., Ma, G. and Zimmermann, B. (1995) Fiber optic strain monitoring of bridge column retrofitted with composite jacket under flexural loads. Smart Systems for Bridges, Structures, and Highways, SPIE, 2446 ( SPIE, Bellingham, WA ), pp. 16–24.Google Scholar
  45. 45.
    Davis, M. A., Bellemore, D. G., Putnam, M. A., Kersey, A. D., Slattery, K. T., Corona, K. and Schowengerdt, M. (1996) High strain monitoring in composite-wrapped concrete cylinders using embedded fiber Bragg grating arrays. Proceedings of the North American Smart Structures Meeting (San Diego, CA), SPIE, 2721, ( SPIE, Bellingham, WA ), pp. 149–154.Google Scholar
  46. 46.
    Caussignac, J. M., Chabert, A., Morel, G., Rogez, P. and Scantier, J. (1992) Bearings of a bridge fitted with load measuring devices based on an optical fiber technology. Proceedings 1st European Conference on Small Structures and Materials (Glasgow, 1992), pp. 207–210.Google Scholar
  47. 47.
    Habel, W. R. and Hofmann, D. (1994) Determination of structural parameters concerning load capacity based on Fibre-Fabry—Perot-Interferometers. Proceedings 2nd European Conference on Smart Structures and Materials (Glasgow, 1994), pp. 176–179.Google Scholar
  48. 48.
    Holst, A., Habel, W. and Lessing, R. (1992) Fiber-optic intensity-modulated sensors for continuous observation of concrete and rock-fill dams. Proceedings 1st European Conference on Smart Structures and Materials (Glasgow, 1992), pp. 223–226.Google Scholar
  49. 49.
    Wolff, R. and Miesseler, H.-J. (1992) Monitoring of prestressed concrete structures with optical fiber sensors. Proceedings 1st European Conference on Smart Structures and Materials (Glasgow, 1992), pp. 23–29.Google Scholar
  50. 50.
    Davis, M. A., Kersey, A. D., Berkoff, T. A., Jones, R. T., Idriss, R. L. and Kodinduma, M. (1997) Dynamic strain monitoring of an in-use interstate bridge using fiber Bragg grating sensors. Smart Systems for Bridges, Structures, and Highways (San Diego, 1995), SPIE, 3043 ( SPIE, Bellingham, WA ), pp. 87–95.Google Scholar
  51. 51.
    Kim, K. S., Ryu, J. U., Lee, S. J. and Choi, L. (1997) In-situ monitoring of Sungsan Bridge in Han River with an optical fiber sensor system. Smart Systems for Bridges, Structures, and Highways, SPIE, 3043 ( SPIE, Bellingham, WA ), pp. 72–76.Google Scholar
  52. 52.
    Maaskant, R., Alavie, T., Measures, R. M., Ohn, M., Karr, S. and Glennie, D. (1994) Fiber optic Bragg grating sensor network installed in a concrete road bridge. Smart Structures and Materials Conference (Orlando, FL, 1994), SPIE, 2191 ( SPIE, Bellingham, WA ), pp. 457–465.Google Scholar
  53. 53.
    Measures, R. M., Alavie, T., Maaskant, R., Huang, S. and LeBlanc, M. (1994) Bragg grating fiber optic sensing for bridges and other structures. Proceedings 2nd European Conference on Smart Structures and Materials (Glasgow, 1994), pp. 162–167.Google Scholar
  54. 54.
    Measures, R. M., Alavie, A. T., Maaskant, R., Ohn, M., Karr, S. and Huang, S. (1995) A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge. Smart Mater. Struct., 4, 20–30.CrossRefGoogle Scholar
  55. 55.
    Fuhr, P. L., Ambrose, T. P., Huston, D. R. and McPadden, A. P. (1995) Fiber optic corrosion sensing for bridges and roadway surfaces. Smart Structures and Materials Conference (San Diego, CA, 1995), SPIE, 2446 ( SPIE, Bellingham, WA ), pp. 2–8.Google Scholar
  56. 56.
    Fuhr, P. L., Huston, D. R. McPadden, A. J. and Cauley, R. F. (1996) Embedded chloride detectors for roadways and bridges. Smart Systems for Bridges, Structures, and Highways (San Diego, 1995), SPIE, 2719 (SPIE, Bellingham, WA ), pp. 229–237.Google Scholar
  57. 57.
    Teral, S. (1992) Vehicle weighing in motion with fiber optic sensors. Proceedings 1st European Conference on Smart Structures and Materials (Glasgow, 1992), pp. 139–142.Google Scholar
  58. 58.
    Inaudi, D., Vurpillot, S. and Casanova, N. (1996) Bridge monitoring by interferometric deformation sensors. Laser Optoelectronics and Microphotonics: Fiber Optic Sensors (Beijing, China, 1996), SPIE, 2895 ( SPIE, Bellingham, WA ), pp. 34–45.Google Scholar
  59. 59.
    Vurpillot, S., Inaudi, D. and Ducret, J.-M. (1996) Bridge monitoring by fiber optic deformation sensors: design, emplacement and results. Smart Systems for Bridges, Structures, and Highways (San Diego, 1995), SPIE, 2719 ( SPIE, Bellingham, WA ), pp. 141–149.Google Scholar
  60. 60.
    Vurpillot, S., Casanova, N., Inaudi, D. and Kronenberg, P. (1997) Bridge spatial deformation monitoring with 100 fiber optic deformation sensors. Smart Structures and Materials (San Diego, CA, 1997), SPIE, 3043 ( SPIE, Bellingham, WA ), pp. 51–57.Google Scholar
  61. 61.
    Kronenberg, P., Casanova, N., Inaudi, D. and Vurpillot, S. (1997) Dam monitoring with fiber optic sensors. Smart Structures and Materials, SPIE, 3043 ( SPIE, Bellingham, WA ), pp. 2–11.Google Scholar
  62. 62.
    Inaudi, D., Casanova, N., Kronenberg, P. and Vurpillot, S. (1997) Railway bridge monitoring during construction and bridge sliding. Smart Structures and Materials 1997: Smart Systems for Bridges, Structures, and Highways (San Diego, CA, 1997), SPIE, 3043 ( SPIE, Bellingham, WA ), pp. 58–64.Google Scholar
  63. 63.
    Huston, D. R., Fuhr, P. L. and Ambrose, T. P. (1993) Dynamic testing of concrete with fiber optic sensors, in Application of Fiber Optic Sensors in Engineering Mechanics ( F. Ansari, ed.), ASCE, New York, pp. 134–143.Google Scholar
  64. 64.
    Fuhr, P. L., Huston, D. R., Ambrose, T. P. and Barker, D. A. (1994) Embedded sensors results from the Winooski One hydroelectric dam. Smart Structures and Materials Conference. (Orlando, FL, 1994), SPIE, 2191 ( SPIE, Bellingham, WA ), pp. 446–456.Google Scholar
  65. 65.
    Fuhr, P. L. and Huston, D. R. (1993) Multiplexed fiber optic pressure and vibration sensors for hydroelectric dam monitoring. Smart Mater. Struct., 2, 260–263.CrossRefGoogle Scholar
  66. 66.
    Fuhr, P. L., Kajenski, P. J. and Huston, D. R. (1992) Simultaneous single fiber optical communications and sensoring for intelligent structures. Smart Mater. Struct., 1, 128–133.CrossRefGoogle Scholar
  67. 67.
    Fuhr, P. L., Huston, D. R. and Ambrose, T. P. (1993) Prefabricated sensor panels for smart civil structures instrumentation. Smart Structures and Materials Conference (Albuquerque, NM, 1993), SPIE, 1918 ( SPIE, Bellingham, WA ), pp. 435–439.Google Scholar
  68. 68.
    Fuhr, P. L., Huston, D. R. and Ambrose, T. P. (1993) Interrogation of multiple embedded fiber sensors in civil structures using radio telemetry. Smart Mater. Struct., 2, 264–269.Google Scholar
  69. 69.
    Fuhr, P. L., Huston, D. R. and Ambrose, T. P. (1994) Remote monitoring of instrumented structures using the INTERNET information superhighway. Proceedings 2nd European Conference on Smart Structures and Materials (Glasgow, 1994),pp. 148151.Google Scholar
  70. 70.
    Fuhr, P. L., Huston, D. R., Ambrose, T. P. and Mowat, E. F. (1995) An Internet observatory: remote monitoring of instrumented civil structures using the information superhighway. Smart Mater. Struct., 4, 14–19.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • C. I. Merzbacher
  • A. D. Kersey
  • E. J. Friebele

There are no affiliations available

Personalised recommendations